Hjgugugjhuhjggg
commited on
Commit
•
c496fe5
1
Parent(s):
5a21f1e
Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,16 @@ import logging
|
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from pydantic import BaseModel
|
7 |
from google.cloud import storage
|
|
|
8 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
9 |
import uvicorn
|
10 |
-
import
|
11 |
import requests
|
12 |
import io
|
13 |
from safetensors import safe_open
|
|
|
14 |
|
|
|
15 |
from dotenv import load_dotenv
|
16 |
load_dotenv()
|
17 |
|
@@ -20,9 +23,11 @@ GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
|
|
20 |
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
21 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
22 |
|
|
|
23 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
|
|
26 |
try:
|
27 |
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
|
28 |
storage_client = storage.Client.from_service_account_info(credentials_info)
|
@@ -66,12 +71,13 @@ def load_model_from_gcs(model_name: str, model_files: list):
|
|
66 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
67 |
model_blobs = {file: gcs_handler.download_file(f"{model_name}/{file}") for file in model_files}
|
68 |
|
|
|
69 |
model_stream = model_blobs.get("pytorch_model.bin") or model_blobs.get("model.safetensors")
|
70 |
config_stream = model_blobs.get("config.json")
|
71 |
tokenizer_stream = model_blobs.get("tokenizer.json")
|
72 |
|
73 |
if "safetensors" in model_stream.name:
|
74 |
-
model = load_safetensors_model(model_stream)
|
75 |
else:
|
76 |
model = AutoModelForCausalLM.from_pretrained(model_stream, config=config_stream)
|
77 |
|
@@ -79,7 +85,7 @@ def load_model_from_gcs(model_name: str, model_files: list):
|
|
79 |
|
80 |
return model, tokenizer
|
81 |
|
82 |
-
def load_safetensors_model(model_stream):
|
83 |
with safe_open(model_stream, framework="pt") as model_data:
|
84 |
model = torch.load(model_data)
|
85 |
return model
|
@@ -88,7 +94,7 @@ def get_model_files_from_gcs(model_name: str):
|
|
88 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
89 |
blob_list = list(gcs_handler.bucket.list_blobs(prefix=f"{model_name}/"))
|
90 |
model_files = [blob.name for blob in blob_list if "pytorch_model" in blob.name or "model" in blob.name]
|
91 |
-
model_files = sorted(model_files)
|
92 |
return model_files
|
93 |
|
94 |
@app.post("/predict/")
|
@@ -98,14 +104,17 @@ async def predict(request: DownloadModelRequest):
|
|
98 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
99 |
model_prefix = request.model_name
|
100 |
|
|
|
101 |
model_files = get_model_files_from_gcs(model_prefix)
|
102 |
|
103 |
if not model_files:
|
104 |
logger.error(f"Modelos no encontrados en GCS para '{model_prefix}'.")
|
105 |
raise HTTPException(status_code=404, detail="Model files not found in GCS.")
|
106 |
|
|
|
107 |
model, tokenizer = load_model_from_gcs(model_prefix, model_files)
|
108 |
|
|
|
109 |
pipe = pipeline(request.pipeline_task, model=model, tokenizer=tokenizer)
|
110 |
|
111 |
if request.pipeline_task in ["text-generation", "translation", "summarization"]:
|
|
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from pydantic import BaseModel
|
7 |
from google.cloud import storage
|
8 |
+
from google.auth import exceptions
|
9 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
10 |
import uvicorn
|
11 |
+
from google.cloud.storage.blob import Blob
|
12 |
import requests
|
13 |
import io
|
14 |
from safetensors import safe_open
|
15 |
+
import torch
|
16 |
|
17 |
+
# Cargar las variables de entorno
|
18 |
from dotenv import load_dotenv
|
19 |
load_dotenv()
|
20 |
|
|
|
23 |
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
|
24 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
25 |
|
26 |
+
# Configuración del logger
|
27 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
28 |
logger = logging.getLogger(__name__)
|
29 |
|
30 |
+
# Inicializar el cliente de Google Cloud Storage
|
31 |
try:
|
32 |
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
|
33 |
storage_client = storage.Client.from_service_account_info(credentials_info)
|
|
|
71 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
72 |
model_blobs = {file: gcs_handler.download_file(f"{model_name}/{file}") for file in model_files}
|
73 |
|
74 |
+
# Verificar si el modelo es de safetensors o torch
|
75 |
model_stream = model_blobs.get("pytorch_model.bin") or model_blobs.get("model.safetensors")
|
76 |
config_stream = model_blobs.get("config.json")
|
77 |
tokenizer_stream = model_blobs.get("tokenizer.json")
|
78 |
|
79 |
if "safetensors" in model_stream.name:
|
80 |
+
model = load_safetensors_model(model_stream, config_stream)
|
81 |
else:
|
82 |
model = AutoModelForCausalLM.from_pretrained(model_stream, config=config_stream)
|
83 |
|
|
|
85 |
|
86 |
return model, tokenizer
|
87 |
|
88 |
+
def load_safetensors_model(model_stream, config_stream):
|
89 |
with safe_open(model_stream, framework="pt") as model_data:
|
90 |
model = torch.load(model_data)
|
91 |
return model
|
|
|
94 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
95 |
blob_list = list(gcs_handler.bucket.list_blobs(prefix=f"{model_name}/"))
|
96 |
model_files = [blob.name for blob in blob_list if "pytorch_model" in blob.name or "model" in blob.name]
|
97 |
+
model_files = sorted(model_files) # Asegurar que los archivos fragmentados estén en el orden correcto
|
98 |
return model_files
|
99 |
|
100 |
@app.post("/predict/")
|
|
|
104 |
gcs_handler = GCSHandler(GCS_BUCKET_NAME)
|
105 |
model_prefix = request.model_name
|
106 |
|
107 |
+
# Obtener los archivos del modelo (incluyendo fragmentados)
|
108 |
model_files = get_model_files_from_gcs(model_prefix)
|
109 |
|
110 |
if not model_files:
|
111 |
logger.error(f"Modelos no encontrados en GCS para '{model_prefix}'.")
|
112 |
raise HTTPException(status_code=404, detail="Model files not found in GCS.")
|
113 |
|
114 |
+
# Cargar el modelo desde GCS
|
115 |
model, tokenizer = load_model_from_gcs(model_prefix, model_files)
|
116 |
|
117 |
+
# Instanciar el pipeline de Hugging Face
|
118 |
pipe = pipeline(request.pipeline_task, model=model, tokenizer=tokenizer)
|
119 |
|
120 |
if request.pipeline_task in ["text-generation", "translation", "summarization"]:
|