Hjgugugjhuhjggg
commited on
Commit
•
f173552
1
Parent(s):
cff40fe
Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,7 @@ from fastapi import FastAPI, HTTPException
|
|
7 |
from pydantic import BaseModel
|
8 |
from google.cloud import storage
|
9 |
from google.auth import exceptions
|
10 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
-
from transformers.hf_api import HfApi, HfFolder, HfLoginManager
|
12 |
from io import BytesIO
|
13 |
from dotenv import load_dotenv
|
14 |
import uvicorn
|
@@ -33,16 +32,6 @@ except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError) as e
|
|
33 |
# Inicialización de FastAPI
|
34 |
app = FastAPI()
|
35 |
|
36 |
-
# Inicio de sesión en Hugging Face
|
37 |
-
try:
|
38 |
-
if not HF_API_TOKEN:
|
39 |
-
raise ValueError("El token de Hugging Face no está definido en las variables de entorno.")
|
40 |
-
HfApi().set_access_token(HF_API_TOKEN)
|
41 |
-
print("Inicio de sesión en Hugging Face exitoso.")
|
42 |
-
except Exception as e:
|
43 |
-
print(f"Error al iniciar sesión en Hugging Face: {e}")
|
44 |
-
exit(1)
|
45 |
-
|
46 |
|
47 |
class DownloadModelRequest(BaseModel):
|
48 |
model_name: str
|
@@ -88,28 +77,65 @@ class GCSStreamHandler:
|
|
88 |
return model_files
|
89 |
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
@app.post("/predict/")
|
92 |
async def predict(request: DownloadModelRequest):
|
|
|
|
|
|
|
93 |
try:
|
94 |
gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
# Define patrones para los archivos de modelos
|
100 |
model_patterns = [
|
101 |
r"pytorch_model-\d+-of-\d+",
|
102 |
r"model-\d+",
|
103 |
r"pytorch_model.bin",
|
104 |
-
r"model.safetensors"
|
105 |
]
|
106 |
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
#
|
111 |
-
config_stream = gcs_handler.stream_file_from_gcs(f"{
|
112 |
-
tokenizer_stream = gcs_handler.stream_file_from_gcs(f"{
|
113 |
|
114 |
model = AutoModelForCausalLM.from_pretrained(BytesIO(config_stream))
|
115 |
state_dict = {}
|
@@ -135,42 +161,5 @@ async def predict(request: DownloadModelRequest):
|
|
135 |
raise HTTPException(status_code=500, detail=f"Error: {e}")
|
136 |
|
137 |
|
138 |
-
@app.post("/upload/")
|
139 |
-
async def upload_model_to_gcs(model_name: str):
|
140 |
-
"""
|
141 |
-
Descarga un modelo desde Hugging Face y lo sube a GCS en streaming.
|
142 |
-
"""
|
143 |
-
try:
|
144 |
-
gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)
|
145 |
-
|
146 |
-
# Archivos comunes de los modelos
|
147 |
-
file_patterns = [
|
148 |
-
"pytorch_model.bin",
|
149 |
-
"model.safetensors",
|
150 |
-
"config.json",
|
151 |
-
"tokenizer.json",
|
152 |
-
]
|
153 |
-
|
154 |
-
# Agregar patrones para fragmentos de modelos
|
155 |
-
for i in range(1, 100):
|
156 |
-
file_patterns.append(f"pytorch_model-{i:05}-of-{100:05}")
|
157 |
-
file_patterns.append(f"model-{i:05}")
|
158 |
-
|
159 |
-
for filename in file_patterns:
|
160 |
-
url = f"https://huggingface.co/{model_name}/resolve/main/{filename}"
|
161 |
-
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
162 |
-
try:
|
163 |
-
response = requests.get(url, headers=headers, stream=True)
|
164 |
-
if response.status_code == 200:
|
165 |
-
blob_name = f"{model_name}/{filename}"
|
166 |
-
blob = bucket.blob(blob_name)
|
167 |
-
blob.upload_from_file(BytesIO(response.content))
|
168 |
-
print(f"Archivo {filename} subido correctamente a GCS.")
|
169 |
-
except Exception as e:
|
170 |
-
print(f"Archivo {filename} no encontrado: {e}")
|
171 |
-
except Exception as e:
|
172 |
-
raise HTTPException(status_code=500, detail=f"Error al subir modelo: {e}")
|
173 |
-
|
174 |
-
|
175 |
if __name__ == "__main__":
|
176 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
7 |
from pydantic import BaseModel
|
8 |
from google.cloud import storage
|
9 |
from google.auth import exceptions
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
11 |
from io import BytesIO
|
12 |
from dotenv import load_dotenv
|
13 |
import uvicorn
|
|
|
32 |
# Inicialización de FastAPI
|
33 |
app = FastAPI()
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
class DownloadModelRequest(BaseModel):
|
37 |
model_name: str
|
|
|
77 |
return model_files
|
78 |
|
79 |
|
80 |
+
def download_model_from_huggingface(model_name):
|
81 |
+
"""
|
82 |
+
Descarga un modelo desde Hugging Face y lo sube a GCS en streaming.
|
83 |
+
"""
|
84 |
+
file_patterns = [
|
85 |
+
"pytorch_model.bin",
|
86 |
+
"model.safetensors",
|
87 |
+
"config.json",
|
88 |
+
"tokenizer.json",
|
89 |
+
]
|
90 |
+
|
91 |
+
# Agregar patrones para fragmentos de modelos
|
92 |
+
for i in range(1, 100):
|
93 |
+
file_patterns.append(f"pytorch_model-{i:05}-of-{100:05}")
|
94 |
+
file_patterns.append(f"model-{i:05}")
|
95 |
+
|
96 |
+
for filename in file_patterns:
|
97 |
+
url = f"https://huggingface.co/{model_name}/resolve/main/{filename}"
|
98 |
+
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
99 |
+
try:
|
100 |
+
response = requests.get(url, headers=headers, stream=True)
|
101 |
+
if response.status_code == 200:
|
102 |
+
blob_name = f"{model_name}/{filename}"
|
103 |
+
blob = bucket.blob(blob_name)
|
104 |
+
blob.upload_from_file(BytesIO(response.content))
|
105 |
+
print(f"Archivo {filename} subido correctamente a GCS.")
|
106 |
+
except Exception as e:
|
107 |
+
print(f"Archivo {filename} no encontrado: {e}")
|
108 |
+
|
109 |
+
|
110 |
@app.post("/predict/")
|
111 |
async def predict(request: DownloadModelRequest):
|
112 |
+
"""
|
113 |
+
Endpoint para realizar predicciones. Si el modelo no existe en GCS, se descarga automáticamente.
|
114 |
+
"""
|
115 |
try:
|
116 |
gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)
|
117 |
|
118 |
+
# Verificar si el modelo ya está en GCS
|
119 |
+
model_prefix = request.model_name
|
|
|
|
|
120 |
model_patterns = [
|
121 |
r"pytorch_model-\d+-of-\d+",
|
122 |
r"model-\d+",
|
123 |
r"pytorch_model.bin",
|
124 |
+
r"model.safetensors",
|
125 |
]
|
126 |
|
127 |
+
if not any(
|
128 |
+
gcs_handler.file_exists(f"{model_prefix}/{pattern}") for pattern in model_patterns
|
129 |
+
):
|
130 |
+
print(f"Modelo {model_prefix} no encontrado en GCS. Descargando desde Hugging Face...")
|
131 |
+
download_model_from_huggingface(model_prefix)
|
132 |
+
|
133 |
+
# Carga archivos del modelo desde GCS
|
134 |
+
model_files = gcs_handler.stream_model_files(model_prefix, model_patterns)
|
135 |
|
136 |
+
# Configuración y tokenización
|
137 |
+
config_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/config.json")
|
138 |
+
tokenizer_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/tokenizer.json")
|
139 |
|
140 |
model = AutoModelForCausalLM.from_pretrained(BytesIO(config_stream))
|
141 |
state_dict = {}
|
|
|
161 |
raise HTTPException(status_code=500, detail=f"Error: {e}")
|
162 |
|
163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
if __name__ == "__main__":
|
165 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|