import os import re import json import requests import torch from fastapi import FastAPI, HTTPException from pydantic import BaseModel from google.cloud import storage from google.auth import exceptions from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from io import BytesIO from dotenv import load_dotenv import uvicorn load_dotenv() # Variables de entorno API_KEY = os.getenv("API_KEY") GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON") HF_API_TOKEN = os.getenv("HF_API_TOKEN") # Token de Hugging Face # Validar nombre del bucket def validate_bucket_name(bucket_name): if not re.match(r"^[a-z0-9][a-z0-9\-\.]*[a-z0-9]$", bucket_name): raise ValueError(f"El nombre del bucket '{bucket_name}' no es válido. Debe comenzar y terminar con una letra o número.") return bucket_name # Inicialización del cliente de GCS try: GCS_BUCKET_NAME = validate_bucket_name(GCS_BUCKET_NAME) # Validar el nombre del bucket credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON) storage_client = storage.Client.from_service_account_info(credentials_info) bucket = storage_client.bucket(GCS_BUCKET_NAME) except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError, ValueError) as e: print(f"Error al cargar credenciales o bucket: {e}") exit(1) # Inicialización de FastAPI app = FastAPI() class DownloadModelRequest(BaseModel): model_name: str pipeline_task: str input_text: str class GCSStreamHandler: def __init__(self, bucket_name): self.bucket = storage_client.bucket(bucket_name) def file_exists(self, blob_name): return self.bucket.blob(blob_name).exists() def stream_file_from_gcs(self, blob_name): blob = self.bucket.blob(blob_name) if not blob.exists(): raise HTTPException(status_code=404, detail=f"Archivo '{blob_name}' no encontrado en GCS.") return blob.download_as_bytes() def upload_file_to_gcs(self, blob_name, data_stream): blob = self.bucket.blob(blob_name) blob.upload_from_file(data_stream) print(f"Archivo {blob_name} subido a GCS.") def ensure_bucket_structure(self, model_prefix): # Crea automáticamente la estructura en el bucket si no existe required_files = ["config.json", "tokenizer.json"] for filename in required_files: blob_name = f"{model_prefix}/{filename}" if not self.file_exists(blob_name): print(f"Creando archivo ficticio: {blob_name}") self.bucket.blob(blob_name).upload_from_string("{}", content_type="application/json") def stream_model_files(self, model_prefix, model_patterns): model_files = {} for pattern in model_patterns: blobs = list(self.bucket.list_blobs(prefix=f"{model_prefix}/")) for blob in blobs: if re.match(pattern, blob.name.split('/')[-1]): print(f"Archivo encontrado: {blob.name}") model_files[blob.name.split('/')[-1]] = BytesIO(blob.download_as_bytes()) return model_files def download_model_from_huggingface(model_name): """ Descarga un modelo desde Hugging Face y lo sube a GCS en streaming. """ file_patterns = [ "pytorch_model.bin", "model.safetensors", "config.json", "tokenizer.json", ] # Agregar patrones para fragmentos de modelos for i in range(1, 100): file_patterns.append(f"pytorch_model-{i:05}-of-{100:05}") file_patterns.append(f"model-{i:05}") for filename in file_patterns: url = f"https://huggingface.co/{model_name}/resolve/main/{filename}" headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} try: response = requests.get(url, headers=headers, stream=True) if response.status_code == 200: blob_name = f"{model_name}/{filename}" blob = bucket.blob(blob_name) blob.upload_from_file(BytesIO(response.content)) print(f"Archivo {filename} subido correctamente a GCS.") except Exception as e: print(f"Archivo {filename} no encontrado: {e}") @app.post("/predict/") async def predict(request: DownloadModelRequest): """ Endpoint para realizar predicciones. Si el modelo no existe en GCS, se descarga automáticamente. """ try: gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME) # Verificar si el modelo ya está en GCS model_prefix = request.model_name model_patterns = [ r"pytorch_model-\d+-of-\d+", r"model-\d+", r"pytorch_model.bin", r"model.safetensors", ] if not any( gcs_handler.file_exists(f"{model_prefix}/{pattern}") for pattern in model_patterns ): print(f"Modelo {model_prefix} no encontrado en GCS. Descargando desde Hugging Face...") download_model_from_huggingface(model_prefix) # Carga archivos del modelo desde GCS model_files = gcs_handler.stream_model_files(model_prefix, model_patterns) # Configuración y tokenización config_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/config.json") tokenizer_stream = gcs_handler.stream_file_from_gcs(f"{model_prefix}/tokenizer.json") model = AutoModelForCausalLM.from_pretrained(BytesIO(config_stream)) state_dict = {} for filename, stream in model_files.items(): state_dict.update(torch.load(stream, map_location="cpu")) model.load_state_dict(state_dict) tokenizer = AutoTokenizer.from_pretrained(BytesIO(tokenizer_stream)) # Crear pipeline pipeline_task = request.pipeline_task if pipeline_task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering"]: raise HTTPException(status_code=400, detail="Unsupported pipeline task") pipeline_ = pipeline(pipeline_task, model=model, tokenizer=tokenizer) input_text = request.input_text result = pipeline_(input_text) return {"response": result} except Exception as e: raise HTTPException(status_code=500, detail=f"Error: {e}") if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)