File size: 4,482 Bytes
7453da0
540056e
 
e8fd75c
 
540056e
 
 
e8fd75c
540056e
d6695b2
e8fd75c
540056e
e8fd75c
 
540056e
80aa4e5
508045d
 
 
 
 
455006b
05d65fa
 
43a6e4c
72f0d04
 
 
9375fef
318d728
c0e8b34
72f0d04
 
b8b8031
9375fef
b8b8031
515125b
72f0d04
455006b
 
efc72c4
508045d
fc0768e
508045d
 
 
540056e
e8fd75c
540056e
e8fd75c
f7b9ef5
e8fd75c
 
20fea69
508045d
e8fd75c
508045d
80aa4e5
 
 
e8fd75c
 
9375fef
508045d
23bb5b3
 
b9bed89
 
 
 
9375fef
b9bed89
 
 
 
 
 
 
23bb5b3
b9bed89
 
4f899e0
cdc114c
 
 
 
 
 
 
 
 
 
 
fc26ca1
cdc114c
 
 
b9bed89
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
from gradio_client import Client

#fusecap_client = Client("https://noamrot-fusecap-image-captioning.hf.space/")
fuyu_client = Client("https://adept-fuyu-8b-demo.hf.space/")

def get_caption(image_in):
    
    fuyu_result = fuyu_client.predict(
	    image_in,	# str representing input in 'raw_image' Image component
	    True,	# bool  in 'Enable detailed captioning' Checkbox component
		fn_index=2
    )
    print(f"IMAGE CAPTION: {fuyu_result}")
    return fuyu_result

import re
import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")

agent_maker_sys = f"""
You are an AI whose job is to help users create their own chatbot whose personality will reflect the character or scene from an image described by users.
In particular, you need to respond succintly in a friendly tone, write a system prompt for an LLM, a catchy title for the chatbot, and a very short example user input. Make sure each part is included.
The system prompt will not mention any image provided.

For example, if a user says, "a picture of a man in a black suit and tie riding a black dragon", first do a friendly response, then add the title, system prompt, and example user input. 
Immediately STOP after the example input. It should be EXACTLY in this format:
"Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound?
Title: Dragon Trainer
System prompt: You are a Dragon trainer and your job is to provide guidance and tips on mastering dragons. Use a friendly and informative tone.
Example input: How can I train a dragon to breathe fire?"

Here's another example. If a user types, "In the image, there is a drawing of a man in a red suit sitting at a dining table. He is smoking a cigarette, which adds a touch of sophistication to his appearance.", respond: 
"Sure, I'd be happy to help you build a bot! I'm generating a title, system prompt, and an example input. How do they sound? 
Title: Gentleman's Companion
System prompt: Your a sophisticated old man, also know as the Gentleman's Companion. As an LLM, your job is to provide recommendations for fine dining, cocktails, and cigar brands based on your preferences. Use a sophisticated and refined tone. 
Example input: Can you suggest a good cigar brand for a man who enjoys smoking while dining in style?"
"""

instruction = f"""
<|system|>
{agent_maker_sys}</s>
<|user|>
"""

def infer(image_in):
    gr.Info("Getting image caption with Fuyu...")
    user_prompt = get_caption(image_in)
    
    prompt = f"{instruction.strip()}\n{user_prompt}</s>"    
    #print(f"PROMPT: {prompt}")
    
    gr.Info("Building a system according to the image caption ...")
    outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
    

    pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
    cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
    
    print(f"SUGGESTED LLM: {cleaned_text}")
    
    return cleaned_text.lstrip("\n")

title = f"LLM Agent from a Picture",
description = f"Get a LLM system prompt from a picture so you can use it in <a href='https://huggingface.co/spaces/abidlabs/GPT-Baker'>GPT-Baker</a>."

css = """
#col-container{
    margin: 0 auto;
    max-width: 780px;
    text-align: left;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(f"""
        <h2 style="text-align: center;">LLM Agent from a Picture</h2>
        <p style="text-align: center;">{description}</p>
        """)
        with gr.Group():
            with gr.Row():
                with gr.Column():
                    image_in = gr.Image(
                        label = "Image reference",
                        type = "filepath",
                        elem_id = "image-in"
                    )
                    submit_btn = gr.Button("Make LLM system from my pic !")
                with gr.Column():
                    result = gr.Textbox(
                        label ="Suggested System",
                        lines = 10,
                        max_lines = 30,
                        elem_id = "suggested-system-prompt"
                    )

    submit_btn.click(
        fn = infer,
        inputs = [
            image_in
        ],
        outputs =[
            result
        ]
    )

demo.queue().launch()