Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# 加载模型和处理器
|
7 |
+
model_name = "microsoft/llava-med-v1.5-mistral-7b"
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
9 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
10 |
+
|
11 |
+
def predict(image, question):
|
12 |
+
# 将图像和问题处理为模型输入格式
|
13 |
+
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
|
14 |
+
|
15 |
+
# 生成答案
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model.generate(**inputs)
|
18 |
+
|
19 |
+
# 解码输出
|
20 |
+
answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
21 |
+
return answer
|
22 |
+
|
23 |
+
# 创建 Gradio 界面
|
24 |
+
interface = gr.Interface(
|
25 |
+
fn=predict,
|
26 |
+
inputs=[gr.inputs.Image(type="pil"), gr.inputs.Textbox(label="Question")],
|
27 |
+
outputs="text",
|
28 |
+
title="Medical Visual Question Answering"
|
29 |
+
)
|
30 |
+
|
31 |
+
if __name__ == "__main__":
|
32 |
+
interface.launch()
|