offers_26 / app.py
limitedonly41's picture
Update app.py
b27fb8e verified
import os
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import gradio as gr
from transformers import ViTFeatureExtractor
from huggingface_hub import hf_hub_download
import spaces
from torchvision import transforms
HF_TOKEN = os.environ.get("HF_TOKEN")
model = None
feature_extractor = None
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
VALID_DS_PATH = 'valid_ds.pth'
valid_ds = torch.load(VALID_DS_PATH)
from transformers import ViTModel
from transformers.modeling_outputs import SequenceClassifierOutput
import torch.nn as nn
import torch.nn.functional as F
class ViTForImageClassification(nn.Module):
def __init__(self, num_labels=3):
super(ViTForImageClassification, self).__init__()
self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(self.vit.config.hidden_size, num_labels)
self.num_labels = num_labels
def forward(self, pixel_values, labels):
outputs = self.vit(pixel_values=pixel_values)
output = self.dropout(outputs.last_hidden_state[:,0])
logits = self.classifier(output)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if loss is not None:
return logits, loss.item()
else:
return logits, None
# Load an image from file for inference
def load_image(image_path):
img = Image.open(image_path)
img = img.convert("RGB") # Ensure it's in RGB format
return img
# Inference function
@spaces.GPU()
def run_inference(image, device, valid_ds):
# Load image from the Gradio input
# input_image = Image.fromarray(image.astype('uint8'), 'RGB')
global model, feature_extractor
if model is None or feature_extractor is None:
MODEL_PATH = hf_hub_download(repo_id="limitedonly41/offers_26",
filename="model_50.pt",
use_auth_token=HF_TOKEN)
try:
model = torch.load(MODEL_PATH)
except:
model = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
model.eval()
model.to(device)
# feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k', do_rescale=False)
transform = transforms.Compose([
transforms.Resize((224, 224)), # Resize to the model's input size
transforms.ToTensor(),
])
image = Image.fromarray(image.astype('uint8'), 'RGB')
input_tensor = transform(image)
input_tensor = input_tensor.unsqueeze(0) # Add a batch dimension
input_tensor = input_tensor.to(device) # Send to appropriate computing device
# Disable grad
with torch.no_grad():
# Generate prediction
prediction, _ = model(input_tensor, labels=None)
# Get the predicted class index
predicted_class = torch.argmax(prediction, dim=1).item()
value_predicted = list(valid_ds.class_to_idx.keys())[list(valid_ds.class_to_idx.values()).index(predicted_class)]
# return f"Predicted Class: {value_predicted}, {predicted_class}"
return value_predicted
# # Preprocess the image using the feature extractor
# inputs = feature_extractor(images=input_image, return_tensors="pt")['pixel_values']
# # Send to the appropriate device (CPU/GPU)
# inputs = inputs.to(device)
# # Disable gradients during inference
# with torch.no_grad():
# # Generate prediction
# prediction, _ = model(inputs, None)
# # Predicted class value using argmax
# predicted_class = np.argmax(prediction.cpu().numpy())
# value_predicted = list(valid_ds.class_to_idx.keys())[list(valid_ds.class_to_idx.values()).index(predicted_class)]
# # Return the result with the predicted class
# return f"Predicted Class: {value_predicted}, {predicted_class}"
# Create a Gradio interface
iface = gr.Interface(
fn=lambda image: run_inference(image, device, valid_ds),
inputs=gr.Image(type="numpy"), # Updated to use gr.Image
outputs="text", # Output is text (predicted class)
title="Image Classification",
description="Upload an image to get the predicted class using the ViT model."
)
# Launch the Gradio app
iface.launch()