Spaces:
Runtime error
Runtime error
File size: 7,834 Bytes
fef6972 8677f63 d173154 69e9c2b d173154 8677f63 fef6972 295889a fef6972 4f45e25 fef6972 69e9c2b b0da584 69e9c2b 4f45e25 d173154 69e9c2b d173154 4f45e25 d173154 b0da584 080569b 69e9c2b 080569b d173154 f7bb73f 69e9c2b f7bb73f d173154 4f45e25 fef6972 13aaad7 fef6972 4f45e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import torch
import spaces
import logging
from deep_translator import GoogleTranslator
# Configure logging to write messages to a file
logging.basicConfig(filename='app.log', level=logging.ERROR)
# Configuration
max_seq_length = 2048
dtype = None # Auto detection of dtype
load_in_4bit = True # Use 4-bit quantization to reduce memory usage
peft_model_name = "limitedonly41/website_mistral7b_v02_1200_finetuned_7"
# Initialize model and tokenizer variables
model = None
tokenizer = None
import pandas as pd
from tqdm import tqdm
import urllib
import aiohttp
import asyncio
from bs4 import BeautifulSoup
async def fetch_data(url):
headers = {
'Accept': '*/*',
'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7',
'Connection': 'keep-alive',
# 'Origin': 'https://www.beckman.es',
'Referer': f'{url}',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'cross-site',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36',
'sec-ch-ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"',
}
# encoding = 'windows-1251'
encoding = 'utf-8'
timeout = 10 # Set your desired timeout value in seconds
try:
# Function to make the request using urllib
def get_content():
req = urllib.request.Request(url, headers=headers)
with urllib.request.urlopen(req, timeout=timeout) as response:
return response.read()
response_content = await loop.run_in_executor(None, get_content)
soup = BeautifulSoup(response_content, 'html.parser', from_encoding=encoding)
title = soup.find('title').text
description = soup.find('meta', attrs={'name': 'description'})
if description and "content" in description.attrs:
description = description.get("content")
else:
description = ""
keywords = soup.find('meta', attrs={'name': 'keywords'})
if keywords and "content" in keywords.attrs:
keywords = keywords.get("content")
else:
keywords = ""
# h1_all = " ".join(h.text for h in soup.find_all('h1'))
# h2_all = " ".join(h.text for h in soup.find_all('h2'))
# h3_all = " ".join(h.text for h in soup.find_all('h3'))
# paragraphs_all = " ".join(p.text for p in soup.find_all('p'))
h1 = soup.find_all('h1')
h1_all = ""
try:
for x in range (len(h1)):
if x == len(h1) -1:
h1_all = h1_all + h1[x].text
else:
h1_all = h1_all + h1[x].text + ". "
except:
h1_all = ""
paragraphs_all = ""
paragraphs = soup.find_all('p')
try:
for x in range (len(paragraphs)):
if x == len(paragraphs) -1:
paragraphs_all = paragraphs_all + paragraphs[x].text
else:
paragraphs_all = paragraphs_all + paragraphs[x].text + ". "
except:
paragraphs_all = ""
h2 = soup.find_all('h2')
h2_all = ""
try:
for x in range (len(h2)):
if x == len(h2) -1:
h2_all = h2_all + h2[x].text
else:
h2_all = h2_all + h2[x].text + ". "
except:
h2_all = ""
h3 = soup.find_all('h3')
h3_all = ""
try:
for x in range (len(h3)):
if x == len(h3) -1:
h3_all = h3_all + h3[x].text
else:
h3_all = h3_all + h3[x].text + ". "
except:
h3_all = ""
allthecontent = f"{title} {description} {h1_all} {h2_all} {h3_all} {paragraphs_all}"
allthecontent = allthecontent[:4999]
# Clean up the text
h1_all = h1_all.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ')
h2_all = h2_all.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ')
h3_all = h3_all.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ')
title = title.replace(r'\xa0', ' ')
description = description.replace(r'\xa0', ' ')
keywords = keywords.replace(r'\xa0', ' ')
return {
'url': url,
'title': title,
'description': description,
'keywords': keywords,
'h1': h1_all,
'h2': h2_all,
'h3': h3_all,
'paragraphs': paragraphs_all,
'text': allthecontent
}
except Exception as e:
print(url, e)
return {
'url': url,
'title': None,
'description': None,
'keywords': None,
'h1': None,
'h2': None,
'h3': None,
'paragraphs': None,
'text': None
}
async def main(urls):
tasks = [fetch_data(url) for url in urls]
results = []
for future in tqdm(asyncio.as_completed(tasks), total=len(tasks)):
result = await future
results.append(result)
return results
@spaces.GPU()
def classify_website(url):
global model, tokenizer # Declare model and tokenizer as global variables
urls = [url]
# Run asyncio event loop
loop = asyncio.get_event_loop()
results_shop = await main(urls[:]) # Instead of loop.run_until_complete(main(urls))
# Convert results to DataFrame
df_result_train_more = pd.DataFrame(results_shop)
text = df_result_train_more['text'][0]
translated = GoogleTranslator(source='auto', target='en').translate(text[:4990])
try:
# Load the model and tokenizer if they are not already loaded
if model is None or tokenizer is None:
from unsloth import FastLanguageModel
# Load the model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=peft_model_name, # YOUR MODEL YOU USED FOR TRAINING
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Categorize the website into one of the 3 categories:
1) OTHER
2) NEWS/BLOG
3) E-commerce
### Input:
{translated}
### Response:"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
ans = tokenizer.batch_decode(outputs)[0]
ans_pred = ans.split('### Response:')[1].split('<')[0]
if 'OTHER' in ans_pred:
ans_pred = 'OTHER'
elif 'NEWS/BLOG' in ans_pred:
ans_pred = 'NEWS/BLOG'
elif 'E-commerce' in ans_pred:
ans_pred = 'E-commerce'
# else:
# ans_pred = 'OTHER'
return ans_pred
except Exception as e:
logging.exception(e)
return str(e)
# Create a Gradio interface
iface = gr.Interface(
fn=classify_website,
inputs="text",
outputs="text",
title="Website Categorization",
description="Categorize a website into one of the 3 categories: OTHER, NEWS/BLOG, or E-commerce."
)
iface.queue() # <-- Sets up a queue with default parameters
# Launch the interface
iface.launch()
|