Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +58 -19
- requirements.txt +3 -1
app.py
CHANGED
@@ -11,19 +11,20 @@ from monai.transforms import (
|
|
11 |
LoadImage, Orientation, Compose, ToTensor, Activations,
|
12 |
FillHoles, KeepLargestConnectedComponent, AsDiscrete, ScaleIntensityRange
|
13 |
)
|
|
|
|
|
14 |
|
15 |
|
16 |
# global params
|
17 |
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
examples_path = [
|
19 |
os.path.join(THIS_DIR, 'examples', 'HCC_003.nrrd'),
|
20 |
-
os.path.join(THIS_DIR, 'examples', 'HCC_006.nrrd'),
|
21 |
os.path.join(THIS_DIR, 'examples', 'HCC_007.nrrd'),
|
22 |
os.path.join(THIS_DIR, 'examples', 'HCC_018.nrrd')
|
23 |
]
|
24 |
models_path = {
|
25 |
"liver": os.path.join(THIS_DIR, 'checkpoints', 'liver_3DSegResNetVAE.pth'),
|
26 |
-
"tumor": os.path.join(THIS_DIR, 'checkpoints', '
|
27 |
}
|
28 |
cache_path = {
|
29 |
"liver mask": "liver_mask.npy",
|
@@ -127,7 +128,7 @@ def load_image(image, slider, selected_slice):
|
|
127 |
|
128 |
image, annotations = render(image_name, slider, selected_slice)
|
129 |
|
130 |
-
return f"Your image is successfully loaded! Please use the slider to view the image (zmin: 1, zmax: {input.shape[-1]}).", (image, annotations)
|
131 |
|
132 |
|
133 |
def segment_tumor(image_name):
|
@@ -245,44 +246,87 @@ def segment(image, selected_mask, slider, selected_slice):
|
|
245 |
|
246 |
image, annotations = render(image, slider, selected_slice)
|
247 |
|
248 |
-
return f"Segmentation is completed
|
249 |
|
250 |
|
251 |
def generate_summary(image):
|
|
|
252 |
image_name = image.name.split('/')[-1].replace(".nrrd","")
|
|
|
|
|
|
|
|
|
|
|
253 |
features = generate_features(mydict[image_name]["img"], mydict[image_name]["liver mask"], mydict[image_name]["tumor mask"])
|
254 |
print(features)
|
255 |
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
|
259 |
with gr.Blocks() as app:
|
260 |
with gr.Column():
|
261 |
gr.Markdown(
|
262 |
"""
|
263 |
-
#
|
|
|
|
|
264 |
|
265 |
-
This tool is designed to assist in the identification and segmentation of
|
266 |
|
267 |
-
β οΈ Important disclaimer: these model outputs should NOT replace the medical diagnosis of healthcare professionals. For your reference, our model was trained on the [HCC-TACE-Seg dataset](https://www.cancerimagingarchive.net/collection/hcc-tace-seg/) and achieved 0.954 dice score for
|
268 |
""")
|
269 |
|
270 |
with gr.Row():
|
271 |
-
comment = gr.Textbox(label='Your tool guide:', value="π Hi there,
|
272 |
|
273 |
|
274 |
with gr.Row():
|
275 |
|
276 |
with gr.Column(scale=2):
|
277 |
image_file = gr.File(label="Step 1: Upload a CT image (.nrrd)", file_count='single', file_types=['.nrrd'], type='filepath')
|
|
|
278 |
btn_upload = gr.Button("Upload")
|
279 |
|
280 |
with gr.Column(scale=2):
|
281 |
selected_mask = gr.CheckboxGroup(label='Step 2: Select mask to produce', choices=['liver mask', 'tumor mask'], value = ['liver mask'])
|
282 |
-
btn_segment = gr.Button("
|
283 |
|
284 |
with gr.Row():
|
285 |
-
slider = gr.Slider(1, 100, step=1, label="
|
286 |
selected_slice = gr.State(value=1)
|
287 |
|
288 |
with gr.Row():
|
@@ -295,17 +339,11 @@ with gr.Blocks() as app:
|
|
295 |
btn_download_tumor = gr.DownloadButton("Download tumor mask", visible=False)
|
296 |
|
297 |
with gr.Row():
|
298 |
-
report = gr.Textbox(label='Step 4. Generate summary report using AI:')
|
299 |
|
300 |
with gr.Row():
|
301 |
btn_report = gr.Button("Generate summary")
|
302 |
-
|
303 |
|
304 |
-
gr.Examples(
|
305 |
-
examples_path,
|
306 |
-
[image_file],
|
307 |
-
)
|
308 |
-
|
309 |
btn_upload.click(fn=load_image,
|
310 |
inputs=[image_file, slider, selected_slice],
|
311 |
outputs=[comment, myimage],
|
@@ -323,7 +361,8 @@ with gr.Blocks() as app:
|
|
323 |
)
|
324 |
|
325 |
btn_report.click(fn=generate_summary,
|
326 |
-
|
|
|
327 |
)
|
328 |
|
329 |
|
|
|
11 |
LoadImage, Orientation, Compose, ToTensor, Activations,
|
12 |
FillHoles, KeepLargestConnectedComponent, AsDiscrete, ScaleIntensityRange
|
13 |
)
|
14 |
+
import llama_cpp
|
15 |
+
import llama_cpp.llama_tokenizer
|
16 |
|
17 |
|
18 |
# global params
|
19 |
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
|
20 |
examples_path = [
|
21 |
os.path.join(THIS_DIR, 'examples', 'HCC_003.nrrd'),
|
|
|
22 |
os.path.join(THIS_DIR, 'examples', 'HCC_007.nrrd'),
|
23 |
os.path.join(THIS_DIR, 'examples', 'HCC_018.nrrd')
|
24 |
]
|
25 |
models_path = {
|
26 |
"liver": os.path.join(THIS_DIR, 'checkpoints', 'liver_3DSegResNetVAE.pth'),
|
27 |
+
"tumor": os.path.join(THIS_DIR, 'checkpoints', 'tumor_3DSegResNetVAE.pth')
|
28 |
}
|
29 |
cache_path = {
|
30 |
"liver mask": "liver_mask.npy",
|
|
|
128 |
|
129 |
image, annotations = render(image_name, slider, selected_slice)
|
130 |
|
131 |
+
return f"π Your image is successfully loaded! Please use the slider to view the image (zmin: 1, zmax: {input.shape[-1]}).", (image, annotations)
|
132 |
|
133 |
|
134 |
def segment_tumor(image_name):
|
|
|
246 |
|
247 |
image, annotations = render(image, slider, selected_slice)
|
248 |
|
249 |
+
return f"π₯³ Segmentation is completed. You can use the slider to view slices or proceed with generating a summary report.", download_liver, download_tumor, (image, annotations)
|
250 |
|
251 |
|
252 |
def generate_summary(image):
|
253 |
+
|
254 |
image_name = image.name.split('/')[-1].replace(".nrrd","")
|
255 |
+
|
256 |
+
if "liver mask" not in mydict[image_name] or "tumor mask" not in mydict[image_name]:
|
257 |
+
return "β You need to generate both liver and tumor masks before we can create a summary report.", "Not generated"
|
258 |
+
|
259 |
+
# extract tumor features from CT scan
|
260 |
features = generate_features(mydict[image_name]["img"], mydict[image_name]["liver mask"], mydict[image_name]["tumor mask"])
|
261 |
print(features)
|
262 |
|
263 |
+
# initialize LLM pulling from hugging face
|
264 |
+
llama = llama_cpp.Llama.from_pretrained(
|
265 |
+
repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
|
266 |
+
filename="*q8_0.gguf",
|
267 |
+
tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B"),
|
268 |
+
verbose=False
|
269 |
+
)
|
270 |
+
|
271 |
+
# openai.api_key = os.environ["OPENAI"]
|
272 |
+
system_msg = """
|
273 |
+
You are a radiologist. You use a segmentation model that extracts tumor characteristics from CT scans from which you generate a diagnosis report.
|
274 |
+
The report should include recommendations for next steps, and a disclaimer that these results should be taken with a grain of salt.
|
275 |
+
"""
|
276 |
+
|
277 |
+
user_msg = f"""
|
278 |
+
The tumor characteristics are:
|
279 |
+
{str(features)}
|
280 |
+
Please provide your interpretation of the findings and a differential diagnosis, considering the possibility of liver cancer (hepatocellular carcinoma or metastatic liver lesions).
|
281 |
+
"""
|
282 |
+
print(user_msg)
|
283 |
+
|
284 |
+
response = llama.create_chat_completion(
|
285 |
+
messages = [
|
286 |
+
{"role": "system", "content": system_msg},
|
287 |
+
{"role": "user", "content": user_msg}
|
288 |
+
],
|
289 |
+
temperature=0.7
|
290 |
+
)
|
291 |
+
print(response)
|
292 |
+
|
293 |
+
try:
|
294 |
+
report = response["choices"][0]["message"]["content"]
|
295 |
+
return "π Your AI diagnosis summary report is generated! Please review below. Thank you for trying this tool!", report
|
296 |
+
except Exception as e:
|
297 |
+
return "Sorry. There was an error in report generation: " + e, "To be generated"
|
298 |
|
299 |
|
300 |
with gr.Blocks() as app:
|
301 |
with gr.Column():
|
302 |
gr.Markdown(
|
303 |
"""
|
304 |
+
# MedAssist-Liver: an AI-powered Liver Tumor Segmentation Tool
|
305 |
+
|
306 |
+
Welcome to explore the power of AI for automated medical image analysis with our user-friendly app!
|
307 |
|
308 |
+
This tool is designed to assist in the identification and segmentation of liver and tumor from medical images. By uploading a CT scan image, a pre-trained machine learning model will automatically segment the liver and tumor regions. Segmented tumor's characteristics such as shape, size, and location are then analyzed to produce an AI-generated diagnosis report of the liver cancer.
|
309 |
|
310 |
+
β οΈ Important disclaimer: these model outputs should NOT replace the medical diagnosis of healthcare professionals. For your reference, our model was trained on the [HCC-TACE-Seg dataset](https://www.cancerimagingarchive.net/collection/hcc-tace-seg/) and achieved 0.954 dice score for liver segmentation and 0.570 dice score for tumor segmentation. Improving tumor segmentation is still an active area of research!
|
311 |
""")
|
312 |
|
313 |
with gr.Row():
|
314 |
+
comment = gr.Textbox(label='π€ Your tool guide:', value="π Hi there, I will be helping you use this tool. To get started, upload a CT scan image or select one from examples.")
|
315 |
|
316 |
|
317 |
with gr.Row():
|
318 |
|
319 |
with gr.Column(scale=2):
|
320 |
image_file = gr.File(label="Step 1: Upload a CT image (.nrrd)", file_count='single', file_types=['.nrrd'], type='filepath')
|
321 |
+
gr.Examples(examples_path, [image_file])
|
322 |
btn_upload = gr.Button("Upload")
|
323 |
|
324 |
with gr.Column(scale=2):
|
325 |
selected_mask = gr.CheckboxGroup(label='Step 2: Select mask to produce', choices=['liver mask', 'tumor mask'], value = ['liver mask'])
|
326 |
+
btn_segment = gr.Button("Generate Segmentation")
|
327 |
|
328 |
with gr.Row():
|
329 |
+
slider = gr.Slider(1, 100, step=1, label="Image slice: ")
|
330 |
selected_slice = gr.State(value=1)
|
331 |
|
332 |
with gr.Row():
|
|
|
339 |
btn_download_tumor = gr.DownloadButton("Download tumor mask", visible=False)
|
340 |
|
341 |
with gr.Row():
|
342 |
+
report = gr.Textbox(label='Step 4. Generate summary report using AI:', value="To be generated. ")
|
343 |
|
344 |
with gr.Row():
|
345 |
btn_report = gr.Button("Generate summary")
|
|
|
346 |
|
|
|
|
|
|
|
|
|
|
|
347 |
btn_upload.click(fn=load_image,
|
348 |
inputs=[image_file, slider, selected_slice],
|
349 |
outputs=[comment, myimage],
|
|
|
361 |
)
|
362 |
|
363 |
btn_report.click(fn=generate_summary,
|
364 |
+
inputs=[image_file],
|
365 |
+
outputs=[comment, report]
|
366 |
)
|
367 |
|
368 |
|
requirements.txt
CHANGED
@@ -5,4 +5,6 @@ pynrrd==1.0.0
|
|
5 |
nibabel==5.2.1
|
6 |
scikit-image==0.23.2
|
7 |
morphsnakes==2.0.1
|
8 |
-
opencv-python==4.9.0.80
|
|
|
|
|
|
5 |
nibabel==5.2.1
|
6 |
scikit-image==0.23.2
|
7 |
morphsnakes==2.0.1
|
8 |
+
opencv-python==4.9.0.80
|
9 |
+
llama-cpp-python==0.2.63
|
10 |
+
transformers==4.40.0
|