File size: 8,304 Bytes
4df8c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55966a7
 
 
 
 
 
4df8c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d403a5
 
 
4df8c11
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import plotly.express as px
import streamlit as st
import pandas as pd
from ai_assistant import get_ai_response

def get_score_rating(s):
    if   s >= 0.75:
        return "HIGH"
    elif 0.4 <= s < 0.75:
        return "MEDIUM"
    elif s < 0.4:
        return "LOW"

def get_cov_rating(c):
    if   c >= 4:
        return "Sufficient Coverage"
    elif 2 <= c < 4:
        return "Insufficient Coverage"
    elif c < 2:
        return "Significantly Insufficient Coverage"

@st.cache_data
def get_cust_data_dict(cust_name="Wong Ling Yit"):
    
    data = pd.read_csv("data/yoda_data.csv")
    poe_data = pd.read_csv("data/yoda_poe.csv")
    reasons_df = pd.read_csv("data/yoda_reasonings.csv")

    temp = data[data["cust_name"] == cust_name]
    temp_poe = poe_data[poe_data["cust_name"] == cust_name]
    temp_reason = reasons_df[reasons_df["cust_name"] == cust_name]
    
    if len(temp) != 7 or \
       len(temp_poe) != 1 or \
       len(temp_reason) != 5:
        temp = data[data["cust_name"] == "Wong Ling Yit"]
        temp_poe = poe_data[poe_data["cust_name"] == "Wong Ling Yit"]
        temp_reason = reasons_df[reasons_df["cust_name"] == "Wong Ling Yit"]

    temp = temp.rename(columns={
                "prod_cat": "Product Category",
                "cov_level": "Coverage Level",
                "prop_score": "Score",
                "recom_products": "Recommended Product"
            })
    temp["Coverage Rating"] = temp["Coverage Level"].apply(
                                    lambda c: get_cov_rating(c)
    )
    temp["Score Rating"] = temp["Score"].apply(
                                    lambda s: get_score_rating(s)
    )
    cov_rating_map = dict(zip(
                        temp["Product Category"], 
                        temp["Coverage Rating"]
                    ))
    score_rating_map = dict(zip(
                        temp["Product Category"], 
                        temp["Score Rating"]
                    ))

    radar_df = pd.DataFrame({
                    "Product Category": [
                        "Retirement",
                        "Protection",
                        "Savings",
                        "CI",
                        "Investment",
                        "Legacy",
                        "Medical"
                    ]
    })
    radar_df = pd.merge(radar_df, temp, on="Product Category", how="inner")
    temp = temp.sort_values("Score", ascending=False).reset_index(drop=True)
    
    top_categories = temp[:3]["Product Category"].tolist()
    top_recom_products = temp[:3]["Recommended Product"].tolist()
    top_products = []
    for c, p in zip(top_categories, top_recom_products):
        product_msg = f"{c}: {p}"
        top_products.append(product_msg)
    
    top_score = temp.iloc[0]["Score"]
    score_rating = get_score_rating(top_score)
    top_score_msg = f"{top_score:.2f} - {score_rating}"

    poe_findings = temp_poe.iloc[0]["poe_findings"]
    
    temp_reason = temp_reason.sort_values("r_index", ascending=True).reset_index(drop=True)
    temp_reason_ls = temp_reason["reasonings"].tolist()

    return (radar_df, temp, top_products, top_score_msg, 
            poe_findings, temp_reason_ls, 
            cov_rating_map, score_rating_map)

st.title("Persona: Financial Consultant - Leads follow-up")
st.header("Lead selection", divider="blue")
st.subheader("My customers - Hot Lead🔥")

cust_option = st.selectbox(
    label="Customer options",
    options=(
        "Darek Cieslinski", "Anthony Finch", "Ariel CL Ong", 
        "Deren Meng", "Prabhavathi Bharadwaj", "Tan Li Lin",
        "Wei Shan Chin", "Wong Chen Mey", "Wong Ling Yit"),
    label_visibility="collapsed"
)

## "Wei Shan Chin", "Wong Chen Mey", "Tan Li Lin", "Prabhavathi Bharadwaj", 
## "Deren Meng", "Anthony Finch", "Ariel CL Ong", "Darek Cieslinski"
data_pack        = get_cust_data_dict(cust_name=cust_option)
radar_df         = data_pack[0]
df               = data_pack[1]
top_products     = data_pack[2]
score_msg        = data_pack[3]
poe_findings     = data_pack[4]
model_reasons    = data_pack[5]
cov_rating_map   = data_pack[6]
score_rating_map = data_pack[7]
view_1, view_2   = st.columns(2, gap="medium")

with view_1:
    st.subheader("Coverage level")
    fig = px.line_polar(radar_df, r="Coverage Level", 
                        theta="Product Category", line_close=True)
    fig.update_layout(
        margin=dict(l=60, r=40, t=20, b=20),
    )
    fig.update_traces(fill="toself")

    st.plotly_chart(fig, theme="streamlit", use_container_width=True)

with view_2:
    st.subheader("Propensity to buy")
    fig = px.bar(df, x="Product Category", y="Score")
    fig.update_layout(
        margin=dict(l=60, r=40, t=50, b=20),
    )

    st.plotly_chart(fig, theme="streamlit", use_container_width=True)

st.write("")
st.write("***Expand to see more details.***")
with st.expander("Recent engagement.."):
    st.subheader("Financial Needs Analysis (FNA)", divider="blue")
    st.write("")
    st.write("Date: 15/06/2022 - Protection need for family")
    st.write("")
    st.write("Date: 18/02/2019 - Critical Illness coverage gap of S$50,000")
    st.divider()

    st.subheader("Last policies purchased", divider="blue")
    st.write("")
    st.write("Date: 02/12/2017 - PRUActive LinkGuard purchased for self")
    st.write("")
    st.write("Date: 08/11/2013 - PRUWealth Plus (SGD) purchased for daughter")
    st.divider()

st.write("")
st.header("Insights", divider="blue")
st.markdown(
f"""
**Recommended Products:**
- {top_products[0]}
- {top_products[1]}
- {top_products[2]}

**Top LIA Coverage Gap:**
- {poe_findings}

**Propensity to buy score:**
- {score_msg}
"""
)

st.header("Reasonings", divider="blue")
st.write("")
st.markdown(
f"""
**Model Reasonings:**
- {model_reasons[0]}
- {model_reasons[1]}
- {model_reasons[2]}
- {model_reasons[3]}
- {model_reasons[4]}
"""
)
st.write("")

st.header("Sales pitch", divider="blue")
list_of_cust_tabs = st.tabs(tabs=["Summary", "Assistant"])
summary_tab = list_of_cust_tabs[0]
pitch_tab = list_of_cust_tabs[1]

about_this_cust = f"""
Opportunities
===============
In terms of current coverage level,
- Retirement: {cov_rating_map["Retirement"]}
- Protection: {cov_rating_map["Protection"]}
- Savings: {cov_rating_map["Savings"]}
- Critical Illness: {cov_rating_map["CI"]}
- Investment: {cov_rating_map["Investment"]}
- Legacy: {cov_rating_map["Legacy"]}
- Medical: {cov_rating_map["Medical"]}

In terms of likelihood to buy,
- Retirement: {score_rating_map["Retirement"]}
- Protection: {score_rating_map["Protection"]}
- Savings: {score_rating_map["Savings"]}
- Critical Illness: {score_rating_map["CI"]}
- Investment: {score_rating_map["Investment"]}
- Legacy: {score_rating_map["Legacy"]}
- Medical: {score_rating_map["Medical"]}

Recent engagements
===================
Financial Needs Analysis (FNA):
Date: 15/06/2022 - Protection need for family
Date: 18/02/2019 - Critical Illness coverage gap of S$50,000

Last policies purchased:
Date: 02/12/2017 - PRUActive LinkGuard purchased for self
Date: 08/11/2013 - PRUWealth Plus (SGD) purchased for daughter

Insights
=========
Recommended Products:
- {top_products[0]}
- {top_products[1]}
- {top_products[2]}

Top LIA Coverage Gap:
- {poe_findings}

Propensity to buy score: {score_msg}

Predictive model reasonings
===========================
- {model_reasons[0]}
- {model_reasons[1]}
- {model_reasons[2]}
- {model_reasons[3]}
- {model_reasons[4]}
""".strip()

with summary_tab:
    txt = st.text_area(
        "About this customer",
        about_this_cust,
        height=500
    )

with pitch_tab:
    st.write("Suggest sales pitch for this customer")
    generate_button = st.button("Generate")
    if generate_button:
        placeholder = st.empty()
        full_response = ""

        stream = get_ai_response(about_this_cust)
        for chunk in stream:
            token = chunk.choices[0].delta.content
            if token is not None:
                # full_response += token
                full_response += token.replace("\n", "  \n") \
                                      .replace("$", "\$")
                #                       .replace("\[", "$$")
                placeholder.markdown(full_response)
        placeholder.markdown(full_response)
        print(full_response)