File size: 6,033 Bytes
ac8a60b
8434471
ac8a60b
 
 
8434471
ac8a60b
8434471
 
69e20d0
 
 
 
 
 
 
 
 
 
 
 
 
ac8a60b
 
 
 
8434471
69e20d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8434471
 
 
69e20d0
8434471
ac8a60b
8434471
69e20d0
 
 
8434471
69e20d0
8434471
69e20d0
 
 
 
ac8a60b
 
69e20d0
ac8a60b
 
8434471
 
 
 
 
b580d80
 
ac8a60b
 
 
 
 
 
 
 
 
 
 
69e20d0
 
ac8a60b
 
 
 
 
 
8434471
 
 
ac8a60b
 
 
 
8434471
69e20d0
8434471
 
 
 
69e20d0
 
8434471
 
69e20d0
8434471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e20d0
 
 
 
 
8434471
 
69e20d0
 
 
 
 
8434471
 
 
 
 
 
 
 
 
ac8a60b
 
 
8434471
 
 
 
 
 
 
 
 
ac8a60b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import sqlite3
import streamlit as st
from pydantic import BaseModel, Field
from llama_index.core.tools import FunctionTool

import time

db_path = "./database/mock_qna.sqlite"
qna_question_description = """
    Only trigger this when user wants to be tested with a question.
    Use this tool to extract the chapter number from the body of input text, 
    thereafter, chapter number will be used as a filtering criteria for
    extracting the right questions set from database.
    
    Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.
    If no chapter number specified or user requested for random question,
    or user has no preference over which chapter of textbook to be tested,
    set function argument `chapter_n` to be `Chapter_0`.
"""
qna_question_data_format = """
    The format of the function argument `chapter_n` looks as follow:
    It should be in the format with `Chapter_` as prefix.
        Example 1: `Chapter_1` for first chapter
        Example 2: For chapter 12 of the textbook, you should return `Chapter_12`
        Example 3: `Chapter_5` for fifth chapter
"""
qna_answer_description = """
    Use this tool to trigger the evaluation of user's provided input with the 
    correct answer of the Q&A question asked. When user provides answer to the
    question asked, they can reply in natural language or giving the alphabet
    letter of which selected choice they think it's the right answer.
    
    If user's answer is not a single alphabet letter, but is contextually 
    closer to a particular answer choice, return the corresponding
    alphabet A, B, C, D or Z for which the answer's meaning is closest to.

    Thereafter, the `user_selected_answer` argument will be passed to the 
    function for Q&A question evaluation.
"""
qna_answer_data_format = """
    The format of the function argument `user_selected_answer` looks as follow:
        It should be in the format of single character such as `A`, `B`, `C`, `D` or `Z`.
        Example 1: User's answer is `a`, it means choice `A`.
        Example 2: User's answer is contextually closer to 3rd answer choice, it means `C`.
        Example 3: User says last is the answer, it means `D`.
        Example 4: If user doesn't know about the answer, it means `Z`.
"""

class Question_Model(BaseModel):
    chapter_n: str = Field(..., 
                           pattern=r'^Chapter_\d*$',
                           description=qna_question_data_format
                    )

class Answer_Model(BaseModel):
    user_selected_answer: str = Field(...,
                                      pattern=r'^[ABCDZ]$',
                                      description=qna_answer_data_format
                            )

def get_qna_question(chapter_n: str) -> str:

    con = sqlite3.connect(db_path)
    cur = con.cursor()

    filter_clause = "WHERE a.id IS NULL" if chapter_n == "Chapter_0" else f"WHERE a.id IS NULL AND chapter='{chapter_n}'"
    sql_string = """SELECT q.id, question, option_1, option_2, option_3, option_4, q.correct_answer
                    FROM qna_tbl q LEFT JOIN answer_tbl a
                                   ON q.id = a.id
                 """ + filter_clause
    
    res = cur.execute(sql_string)
    result = res.fetchone()

    id       = result[0]
    question = result[1]
    option_1 = result[2]
    option_2 = result[3]
    option_3 = result[4]
    option_4 = result[5]
    c_answer = result[6]

    qna_str  = "As requested, here is the retrieved question: \n" + \
               "============================================= \n" + \
                question.replace("\\n", "\n") + "\n" + \
               "A) " + option_1 + "\n" + \
               "B) " + option_2 + "\n" + \
               "C) " + option_3 + "\n" + \
               "D) " + option_4
    
    st.session_state.question_id = id
    st.session_state.qna_answer = c_answer
    
    con.close()
    
    return qna_str

def evaluate_qna_answer(user_selected_answer: str) -> str:

    answer_mapping = {
        "A": 1,
        "B": 2,
        "C": 3,
        "D": 4,
        "Z": 0
    }
    num_mapping = dict((v,k) for k,v in answer_mapping.items())
    user_answer_numeric = answer_mapping.get(user_selected_answer, 0)

    question_id = st.session_state.question_id
    qna_answer  = st.session_state.qna_answer
    qna_answer_alphabet = num_mapping[qna_answer]

    con = sqlite3.connect(db_path)
    cur = con.cursor()
    sql_string = f"""INSERT INTO answer_tbl 
                     VALUES ({question_id}, {qna_answer}, {user_answer_numeric})
    """
    
    res = cur.execute(sql_string)
    con.commit()
    con.close()

    if qna_answer == user_answer_numeric:
        st.toast("🍯 yummy yummy, hooray!", icon="πŸŽ‰")
        time.sleep(2)
        st.toast("πŸ»πŸ’•πŸ― You got it right!", icon="🎊")
        time.sleep(2)
        st.toast("πŸ₯‡ You are amazing! πŸ’―πŸ’―", icon="πŸ’ͺ")
        st.balloons()
    else:
        st.toast("🐼 Something doesn't seem right.. πŸ”₯🏠πŸ”₯", icon="πŸ˜‚")
        time.sleep(2)
        st.toast("πŸ₯Ά Are you sure..? 😬😬", icon="😭")
        time.sleep(2)
        st.toast("πŸ€œπŸ€› Nevertheless, it was a good try!! πŸ‹οΈβ€β™‚οΈπŸ‹οΈβ€β™‚οΈ", icon="πŸ‘")
        st.snow()

    qna_answer_response = (
        f"Your selected answer is `{user_selected_answer}`, "
        f"but the actual answer is `{qna_answer_alphabet}`. "
    )

    return qna_answer_response

get_qna_question_tool = FunctionTool.from_defaults(
                            fn=get_qna_question,
                            name="Extract_Question",
                            description=qna_question_description,
                            fn_schema=Question_Model
)

evaluate_qna_answer_tool = FunctionTool.from_defaults(
                            fn=evaluate_qna_answer,
                            name="Evaluate_Answer",
                            description=qna_answer_description,
                            fn_schema=Answer_Model
)