Spaces:
Running
Running
lingyit1108
commited on
Commit
·
bd54294
1
Parent(s):
94f18ea
cache chroma_db, fine-tuned-embeddings, etc.
Browse files- .gitattributes +1 -0
- database/mock_qna.db +3 -0
- database/mock_qna_source.csv +3 -0
- models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/data_level0.bin +1 -1
- models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/length.bin +1 -1
- models/chroma_db/chroma.sqlite3 +2 -2
- models/fine-tuned-embeddings/1_Pooling/config.json +3 -0
- models/fine-tuned-embeddings/README.md +3 -0
- models/fine-tuned-embeddings/config.json +3 -0
- models/fine-tuned-embeddings/config_sentence_transformers.json +3 -0
- models/fine-tuned-embeddings/eval/Information-Retrieval_evaluation_results.csv +3 -0
- models/fine-tuned-embeddings/model.safetensors +3 -0
- models/fine-tuned-embeddings/modules.json +3 -0
- models/fine-tuned-embeddings/sentence_bert_config.json +3 -0
- models/fine-tuned-embeddings/special_tokens_map.json +3 -0
- models/fine-tuned-embeddings/tokenizer.json +3 -0
- models/fine-tuned-embeddings/tokenizer_config.json +3 -0
- models/fine-tuned-embeddings/vocab.txt +3 -0
- notebooks/create_mock_qna.ipynb +311 -0
- notebooks/fine-tune-and-persist-vector-store.ipynb +33 -0
- notebooks/fine-tuning-embedding-model.ipynb +64 -752
- notebooks/persisted-embedding-model.ipynb +224 -1
- notebooks/qna_prompting_with_function_calling.ipynb +399 -0
- notebooks/qna_prompting_with_pydantic.ipynb +114 -0
- raw_documents/qna.txt +2 -2
- requirements.txt +3 -1
- streamlit_app.py +57 -19
.gitattributes
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
raw_documents/** filter=lfs diff=lfs merge=lfs -text
|
2 |
models/** filter=lfs diff=lfs merge=lfs -text
|
|
|
|
1 |
raw_documents/** filter=lfs diff=lfs merge=lfs -text
|
2 |
models/** filter=lfs diff=lfs merge=lfs -text
|
3 |
+
database/** filter=lfs diff=lfs merge=lfs -text
|
database/mock_qna.db
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c380902975056aca9cbc32ff2948725fc9901a59ae01e2cf1634f475e1c889f
|
3 |
+
size 8192
|
database/mock_qna_source.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b604288137e94da640f1e5a88900390084eba746508cd7257dbcdba8cbe67f32
|
3 |
+
size 2701
|
models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/data_level0.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1676000
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d37c44e68139700bd5cfddc1f64e610ae6d974b559548175754eac7df1ac8065
|
3 |
size 1676000
|
models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/length.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4000
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc19b1997119425765295aeab72d76faa6927d4f83985d328c26f20468d6cc76
|
3 |
size 4000
|
models/chroma_db/chroma.sqlite3
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffe0f3842c7835daddb5c11b8f70bb5dc6352abcb91c11f30c53a49d8c6d540c
|
3 |
+
size 23486464
|
models/fine-tuned-embeddings/1_Pooling/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfd7e0a022036d0ffa0f998824a918247d5a7473d968cdc92e318fd04098e682
|
3 |
+
size 270
|
models/fine-tuned-embeddings/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:399b632f51b91d4c9c104040c22f21cfb73e671c14975f78af346a238ccd43f1
|
3 |
+
size 2544
|
models/fine-tuned-embeddings/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13582bcf2effc85b7bf3d3f5532e686bc1c9ce86bb009d10f0ec33cbe92299dd
|
3 |
+
size 706
|
models/fine-tuned-embeddings/config_sentence_transformers.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:940d5f50db195fa6e5e6a4f122c095f77880de259d74b14a65779ed48bdd7c56
|
3 |
+
size 124
|
models/fine-tuned-embeddings/eval/Information-Retrieval_evaluation_results.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:858293a2164d38e8abf7e46e701d54a46acc966b5b0ee71355693d339ecc648f
|
3 |
+
size 6519
|
models/fine-tuned-embeddings/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc291c956c8b74f5f8336412568855a17957e71ecb95d0dc1b7429aadee084f4
|
3 |
+
size 133462128
|
models/fine-tuned-embeddings/modules.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84e40c8e006c9b1d6c122e02cba9b02458120b5fb0c87b746c41e0207cf642cf
|
3 |
+
size 349
|
models/fine-tuned-embeddings/sentence_bert_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84e39fda68ccbff05bfa723ae9c0e70e23e2ec373b76e0f8c6e71af72a693cbf
|
3 |
+
size 52
|
models/fine-tuned-embeddings/special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d5b662e421ea9fac075174bb0688ee0d9431699900b90662acd44b2a350503a
|
3 |
+
size 695
|
models/fine-tuned-embeddings/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91f1def9b9391fdabe028cd3f3fcc4efd34e5d1f08c3bf2de513ebb5911a1854
|
3 |
+
size 711649
|
models/fine-tuned-embeddings/tokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b29c7bfc889e53b36d9dd3e686dd4300f6525110eaa98c76a5dafceb2029f53
|
3 |
+
size 1242
|
models/fine-tuned-embeddings/vocab.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3
|
3 |
+
size 231508
|
notebooks/create_mock_qna.ipynb
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "23b388fd-2a24-48cf-9cf8-fd5cd19257d8",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os\n",
|
11 |
+
"import sqlite3\n",
|
12 |
+
"\n",
|
13 |
+
"import pandas as pd"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": null,
|
19 |
+
"id": "1edf4aeb-bcb3-42f6-b3f7-9f9543b5ab12",
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [],
|
22 |
+
"source": []
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "markdown",
|
26 |
+
"id": "04969710-e7b7-4017-8eb7-fc50ee99df6f",
|
27 |
+
"metadata": {},
|
28 |
+
"source": [
|
29 |
+
"### Parameters"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": null,
|
35 |
+
"id": "7cf683dc-93fc-4497-9641-75f0a3c1ba12",
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"db_path = \"../database/mock_qna.db\"\n",
|
40 |
+
"nature_of_run = \"new\" if not os.path.exists(db_path) else \"existing\"\n",
|
41 |
+
"\n",
|
42 |
+
"qna_path = \"../database/mock_qna_source.csv\""
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
+
"id": "b6cca63e-021b-4950-ab9f-0e3170194c35",
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"print(f\"nature of run: `{nature_of_run}`\")"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": null,
|
58 |
+
"id": "add28f2e-d695-42a5-97e5-3647dd768dce",
|
59 |
+
"metadata": {},
|
60 |
+
"outputs": [],
|
61 |
+
"source": [
|
62 |
+
"qna_data = pd.read_csv( qna_path )\n",
|
63 |
+
"qna_cols = list(qna_data.columns)\n",
|
64 |
+
"qna_data.shape"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
+
"id": "26fa3a67-71d9-4410-b0ea-9c1e08ca2f51",
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"qna_data[:3]"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": null,
|
80 |
+
"id": "2a20c4ee-ae53-4582-a660-54e40f8f1dd5",
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": []
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "markdown",
|
87 |
+
"id": "1167bb3a-97fd-48b1-a0a9-eab6e4d54245",
|
88 |
+
"metadata": {},
|
89 |
+
"source": [
|
90 |
+
"### Initialize database connection & resources"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": null,
|
96 |
+
"id": "095b8a2e-c3cb-4c09-b49d-ccb5df8467b0",
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"con = sqlite3.connect(db_path)"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": null,
|
106 |
+
"id": "f2668a87-be3c-464d-a4ad-4e40590cbd0c",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"cur = con.cursor()"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": null,
|
116 |
+
"id": "4437d3cb-b92b-40ef-b030-b7fb4499d0e7",
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"if nature_of_run == \"new\":\n",
|
121 |
+
" qna_cols_str = \", \".join(qna_cols)\n",
|
122 |
+
" cur.execute(f\"\"\"CREATE TABLE qna_tbl (\n",
|
123 |
+
" {qna_cols_str}\n",
|
124 |
+
" )\n",
|
125 |
+
" \"\"\")\n",
|
126 |
+
" print(\"created table `qna_tbl`\")\n",
|
127 |
+
" print(f\"columns for `qna_tbl` are {qna_cols_str}\")"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": null,
|
133 |
+
"id": "a6153892-4d8b-487e-bd1d-05577ef1fcb5",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": []
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "markdown",
|
140 |
+
"id": "cdc0a81b-fb0a-46fa-9646-1a78c2781f02",
|
141 |
+
"metadata": {},
|
142 |
+
"source": [
|
143 |
+
"#### Test fetching empty table"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"id": "dce53aec-680e-4f0f-b6eb-71efe902231a",
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [],
|
152 |
+
"source": [
|
153 |
+
"res = cur.execute(\"SELECT chapter, question FROM qna_tbl\")"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"execution_count": null,
|
159 |
+
"id": "506527e2-4d6d-4817-bdaf-9a31fec3b006",
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [],
|
162 |
+
"source": [
|
163 |
+
"res.fetchone()"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": null,
|
169 |
+
"id": "69f74ed2-a1da-410a-b759-d334fcf37851",
|
170 |
+
"metadata": {},
|
171 |
+
"outputs": [],
|
172 |
+
"source": []
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "markdown",
|
176 |
+
"id": "e82debcf-c3e4-4c93-8e59-2c73ead63adc",
|
177 |
+
"metadata": {},
|
178 |
+
"source": [
|
179 |
+
"#### Test ingesting one record of data"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "code",
|
184 |
+
"execution_count": null,
|
185 |
+
"id": "e239f941-d19b-4400-acac-8a45b7b50fcc",
|
186 |
+
"metadata": {},
|
187 |
+
"outputs": [],
|
188 |
+
"source": [
|
189 |
+
"data = qna_data.values.tolist()\n",
|
190 |
+
"q_mark_list = [\"?\"] * len(qna_cols)\n",
|
191 |
+
"q_mark_str = \"(\" + \", \".join(q_mark_list) + \")\""
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"execution_count": null,
|
197 |
+
"id": "93b7130b-b007-4359-a0a2-bfe5fb7ddba2",
|
198 |
+
"metadata": {},
|
199 |
+
"outputs": [],
|
200 |
+
"source": [
|
201 |
+
"cur.executemany(f\"INSERT INTO qna_tbl VALUES {q_mark_str}\", data[:1])\n",
|
202 |
+
"con.commit()"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": null,
|
208 |
+
"id": "5f01dac9-c9f5-4536-85d4-667abd8f178d",
|
209 |
+
"metadata": {},
|
210 |
+
"outputs": [],
|
211 |
+
"source": []
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "markdown",
|
215 |
+
"id": "bf8b1f1d-08fd-4a07-9489-58ef14b8439d",
|
216 |
+
"metadata": {},
|
217 |
+
"source": [
|
218 |
+
"#### Test fetching one record of data"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": null,
|
224 |
+
"id": "26206800-54c0-495e-bf8f-5958421eddca",
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [],
|
227 |
+
"source": [
|
228 |
+
"res = cur.execute(\"SELECT chapter, question FROM qna_tbl\")\n",
|
229 |
+
"res.fetchone()"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": null,
|
235 |
+
"id": "54722955-7e72-4723-88ca-a0dbee361934",
|
236 |
+
"metadata": {},
|
237 |
+
"outputs": [],
|
238 |
+
"source": []
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "markdown",
|
242 |
+
"id": "54ec1451-fe61-4a92-9148-d4a3d05aeed8",
|
243 |
+
"metadata": {},
|
244 |
+
"source": [
|
245 |
+
"#### Clean up and ingest full Q&A data"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": null,
|
251 |
+
"id": "64131faf-b2e7-4e70-8547-762a09ed2ad2",
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"cur.execute(\"DELETE FROM qna_tbl\")\n",
|
256 |
+
"con.commit()"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"cell_type": "code",
|
261 |
+
"execution_count": null,
|
262 |
+
"id": "06d55885-50b1-4c23-a364-1fb8fa4f4b36",
|
263 |
+
"metadata": {},
|
264 |
+
"outputs": [],
|
265 |
+
"source": [
|
266 |
+
"cur.executemany(f\"INSERT INTO qna_tbl VALUES {q_mark_str}\", data)\n",
|
267 |
+
"con.commit()"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": null,
|
273 |
+
"id": "9e2a3d06-a077-4b32-8fce-600b3577cad9",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"res = cur.execute(\"SELECT COUNT(*) FROM qna_tbl\")\n",
|
278 |
+
"res.fetchone()"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": null,
|
284 |
+
"id": "9256ad33-f70a-482c-801e-01b5a52e8261",
|
285 |
+
"metadata": {},
|
286 |
+
"outputs": [],
|
287 |
+
"source": []
|
288 |
+
}
|
289 |
+
],
|
290 |
+
"metadata": {
|
291 |
+
"kernelspec": {
|
292 |
+
"display_name": "Python 3 (ipykernel)",
|
293 |
+
"language": "python",
|
294 |
+
"name": "python3"
|
295 |
+
},
|
296 |
+
"language_info": {
|
297 |
+
"codemirror_mode": {
|
298 |
+
"name": "ipython",
|
299 |
+
"version": 3
|
300 |
+
},
|
301 |
+
"file_extension": ".py",
|
302 |
+
"mimetype": "text/x-python",
|
303 |
+
"name": "python",
|
304 |
+
"nbconvert_exporter": "python",
|
305 |
+
"pygments_lexer": "ipython3",
|
306 |
+
"version": "3.9.18"
|
307 |
+
}
|
308 |
+
},
|
309 |
+
"nbformat": 4,
|
310 |
+
"nbformat_minor": 5
|
311 |
+
}
|
notebooks/fine-tune-and-persist-vector-store.ipynb
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "10638b27-aa20-43a6-bee6-b7b97f64996e",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": []
|
10 |
+
}
|
11 |
+
],
|
12 |
+
"metadata": {
|
13 |
+
"kernelspec": {
|
14 |
+
"display_name": "Python 3 (ipykernel)",
|
15 |
+
"language": "python",
|
16 |
+
"name": "python3"
|
17 |
+
},
|
18 |
+
"language_info": {
|
19 |
+
"codemirror_mode": {
|
20 |
+
"name": "ipython",
|
21 |
+
"version": 3
|
22 |
+
},
|
23 |
+
"file_extension": ".py",
|
24 |
+
"mimetype": "text/x-python",
|
25 |
+
"name": "python",
|
26 |
+
"nbconvert_exporter": "python",
|
27 |
+
"pygments_lexer": "ipython3",
|
28 |
+
"version": "3.9.18"
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"nbformat": 4,
|
32 |
+
"nbformat_minor": 5
|
33 |
+
}
|
notebooks/fine-tuning-embedding-model.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "ca2c990f-5215-4ab9-8143-1d79db28edc6",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
@@ -16,7 +16,7 @@
|
|
16 |
},
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
-
"execution_count":
|
20 |
"id": "2c535ad7-7846-4bef-8ba8-33e182490c3d",
|
21 |
"metadata": {},
|
22 |
"outputs": [],
|
@@ -30,7 +30,7 @@
|
|
30 |
},
|
31 |
{
|
32 |
"cell_type": "code",
|
33 |
-
"execution_count":
|
34 |
"id": "25f0c7a3-c52f-4417-aec8-4b6cfbf7a1b5",
|
35 |
"metadata": {},
|
36 |
"outputs": [],
|
@@ -44,7 +44,7 @@
|
|
44 |
},
|
45 |
{
|
46 |
"cell_type": "code",
|
47 |
-
"execution_count":
|
48 |
"id": "62f4d7f0-748a-405e-b5f1-6520fd02bedc",
|
49 |
"metadata": {},
|
50 |
"outputs": [],
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
{
|
58 |
"cell_type": "code",
|
59 |
-
"execution_count":
|
60 |
"id": "12527049-a5cb-423c-8de5-099aee970c85",
|
61 |
"metadata": {},
|
62 |
"outputs": [],
|
@@ -66,18 +66,10 @@
|
|
66 |
},
|
67 |
{
|
68 |
"cell_type": "code",
|
69 |
-
"execution_count":
|
70 |
"id": "abde5e6c-3474-460c-9fac-4f3352c38b53",
|
71 |
"metadata": {},
|
72 |
-
"outputs": [
|
73 |
-
{
|
74 |
-
"name": "stdout",
|
75 |
-
"output_type": "stream",
|
76 |
-
"text": [
|
77 |
-
"0.9.39\n"
|
78 |
-
]
|
79 |
-
}
|
80 |
-
],
|
81 |
"source": [
|
82 |
"import llama_index\n",
|
83 |
"print(llama_index.__version__)"
|
@@ -93,7 +85,7 @@
|
|
93 |
},
|
94 |
{
|
95 |
"cell_type": "code",
|
96 |
-
"execution_count":
|
97 |
"id": "978cf71f-1ce7-4598-92fe-18fe22ca37c6",
|
98 |
"metadata": {},
|
99 |
"outputs": [],
|
@@ -115,7 +107,7 @@
|
|
115 |
},
|
116 |
{
|
117 |
"cell_type": "code",
|
118 |
-
"execution_count":
|
119 |
"id": "26f614c8-eb45-4cc1-b067-2c7299587982",
|
120 |
"metadata": {},
|
121 |
"outputs": [],
|
@@ -148,7 +140,7 @@
|
|
148 |
},
|
149 |
{
|
150 |
"cell_type": "code",
|
151 |
-
"execution_count":
|
152 |
"id": "84cc4308-8ac4-4eba-9478-b81d5b645c48",
|
153 |
"metadata": {},
|
154 |
"outputs": [],
|
@@ -184,7 +176,7 @@
|
|
184 |
},
|
185 |
{
|
186 |
"cell_type": "code",
|
187 |
-
"execution_count":
|
188 |
"id": "8f17c832-e9ae-477b-8bf7-a9c8410f1ed8",
|
189 |
"metadata": {},
|
190 |
"outputs": [],
|
@@ -192,7 +184,7 @@
|
|
192 |
"finetune_engine = SentenceTransformersFinetuneEngine(\n",
|
193 |
" train_dataset,\n",
|
194 |
" model_id=\"BAAI/bge-small-en-v1.5\",\n",
|
195 |
-
" model_output_path=\"
|
196 |
" batch_size=5,\n",
|
197 |
" val_dataset=val_dataset\n",
|
198 |
")"
|
@@ -200,60 +192,17 @@
|
|
200 |
},
|
201 |
{
|
202 |
"cell_type": "code",
|
203 |
-
"execution_count":
|
204 |
"id": "a6498d0b-da9a-4f7f-8c85-c9bf4d772c72",
|
205 |
"metadata": {},
|
206 |
-
"outputs": [
|
207 |
-
{
|
208 |
-
"data": {
|
209 |
-
"application/vnd.jupyter.widget-view+json": {
|
210 |
-
"model_id": "e80f94e7c7a84014b3cbf270dde3fcaf",
|
211 |
-
"version_major": 2,
|
212 |
-
"version_minor": 0
|
213 |
-
},
|
214 |
-
"text/plain": [
|
215 |
-
"Epoch: 0%| | 0/2 [00:00<?, ?it/s]"
|
216 |
-
]
|
217 |
-
},
|
218 |
-
"metadata": {},
|
219 |
-
"output_type": "display_data"
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"data": {
|
223 |
-
"application/vnd.jupyter.widget-view+json": {
|
224 |
-
"model_id": "d02eb3c3b1454494a566557e8b73174f",
|
225 |
-
"version_major": 2,
|
226 |
-
"version_minor": 0
|
227 |
-
},
|
228 |
-
"text/plain": [
|
229 |
-
"Iteration: 0%| | 0/183 [00:00<?, ?it/s]"
|
230 |
-
]
|
231 |
-
},
|
232 |
-
"metadata": {},
|
233 |
-
"output_type": "display_data"
|
234 |
-
},
|
235 |
-
{
|
236 |
-
"data": {
|
237 |
-
"application/vnd.jupyter.widget-view+json": {
|
238 |
-
"model_id": "0d73a19c286e43afa7c12cfb5fb49d34",
|
239 |
-
"version_major": 2,
|
240 |
-
"version_minor": 0
|
241 |
-
},
|
242 |
-
"text/plain": [
|
243 |
-
"Iteration: 0%| | 0/183 [00:00<?, ?it/s]"
|
244 |
-
]
|
245 |
-
},
|
246 |
-
"metadata": {},
|
247 |
-
"output_type": "display_data"
|
248 |
-
}
|
249 |
-
],
|
250 |
"source": [
|
251 |
"finetune_engine.finetune()"
|
252 |
]
|
253 |
},
|
254 |
{
|
255 |
"cell_type": "code",
|
256 |
-
"execution_count":
|
257 |
"id": "e057b405-aa0e-4e78-91e0-9bf40f01c1a9",
|
258 |
"metadata": {},
|
259 |
"outputs": [],
|
@@ -263,21 +212,10 @@
|
|
263 |
},
|
264 |
{
|
265 |
"cell_type": "code",
|
266 |
-
"execution_count":
|
267 |
"id": "72d9f97a-0902-4e65-8459-b34613e419f6",
|
268 |
"metadata": {},
|
269 |
-
"outputs": [
|
270 |
-
{
|
271 |
-
"data": {
|
272 |
-
"text/plain": [
|
273 |
-
"HuggingFaceEmbedding(model_name='test_model', embed_batch_size=10, callback_manager=<llama_index.callbacks.base.CallbackManager object at 0x3c7fadca0>, tokenizer_name='test_model', max_length=512, pooling=<Pooling.CLS: 'cls'>, normalize=True, query_instruction=None, text_instruction=None, cache_folder=None)"
|
274 |
-
]
|
275 |
-
},
|
276 |
-
"execution_count": 14,
|
277 |
-
"metadata": {},
|
278 |
-
"output_type": "execute_result"
|
279 |
-
}
|
280 |
-
],
|
281 |
"source": [
|
282 |
"embed_model"
|
283 |
]
|
@@ -285,11 +223,21 @@
|
|
285 |
{
|
286 |
"cell_type": "code",
|
287 |
"execution_count": null,
|
288 |
-
"id": "
|
289 |
"metadata": {},
|
290 |
"outputs": [],
|
291 |
"source": []
|
292 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
{
|
294 |
"cell_type": "code",
|
295 |
"execution_count": null,
|
@@ -300,7 +248,7 @@
|
|
300 |
},
|
301 |
{
|
302 |
"cell_type": "code",
|
303 |
-
"execution_count":
|
304 |
"id": "ac4a1a5b-974d-452e-8507-0950c962f9b2",
|
305 |
"metadata": {},
|
306 |
"outputs": [],
|
@@ -341,7 +289,7 @@
|
|
341 |
},
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
-
"execution_count":
|
345 |
"id": "a53cf893-ce9f-4d9d-ad4a-e9e17fb058d3",
|
346 |
"metadata": {},
|
347 |
"outputs": [],
|
@@ -359,7 +307,7 @@
|
|
359 |
" queries, corpus, relevant_docs, name=name\n",
|
360 |
" )\n",
|
361 |
" model = SentenceTransformer(model_id)\n",
|
362 |
-
" output_path = \"results/\"\n",
|
363 |
" Path(output_path).mkdir(exist_ok=True, parents=True)\n",
|
364 |
" return evaluator(model, output_path=output_path)"
|
365 |
]
|
@@ -390,49 +338,10 @@
|
|
390 |
},
|
391 |
{
|
392 |
"cell_type": "code",
|
393 |
-
"execution_count":
|
394 |
"id": "91f057aa-4b59-48ea-b3d5-23012a4d487f",
|
395 |
"metadata": {},
|
396 |
-
"outputs": [
|
397 |
-
{
|
398 |
-
"data": {
|
399 |
-
"application/vnd.jupyter.widget-view+json": {
|
400 |
-
"model_id": "f4bf05fbe14c4c379c0b3e1912b84d36",
|
401 |
-
"version_major": 2,
|
402 |
-
"version_minor": 0
|
403 |
-
},
|
404 |
-
"text/plain": [
|
405 |
-
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
406 |
-
]
|
407 |
-
},
|
408 |
-
"metadata": {},
|
409 |
-
"output_type": "display_data"
|
410 |
-
},
|
411 |
-
{
|
412 |
-
"name": "stderr",
|
413 |
-
"output_type": "stream",
|
414 |
-
"text": [
|
415 |
-
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
416 |
-
"To disable this warning, you can either:\n",
|
417 |
-
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
418 |
-
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
419 |
-
]
|
420 |
-
},
|
421 |
-
{
|
422 |
-
"data": {
|
423 |
-
"application/vnd.jupyter.widget-view+json": {
|
424 |
-
"model_id": "4f365d1cab004fe897949e2a3928c457",
|
425 |
-
"version_major": 2,
|
426 |
-
"version_minor": 0
|
427 |
-
},
|
428 |
-
"text/plain": [
|
429 |
-
" 0%| | 0/200 [00:00<?, ?it/s]"
|
430 |
-
]
|
431 |
-
},
|
432 |
-
"metadata": {},
|
433 |
-
"output_type": "display_data"
|
434 |
-
}
|
435 |
-
],
|
436 |
"source": [
|
437 |
"ada = OpenAIEmbedding()\n",
|
438 |
"ada_val_results = evaluate(val_dataset, ada)"
|
@@ -440,7 +349,7 @@
|
|
440 |
},
|
441 |
{
|
442 |
"cell_type": "code",
|
443 |
-
"execution_count":
|
444 |
"id": "5d2f59c6-75d3-4970-bac3-dfe0eef00efe",
|
445 |
"metadata": {},
|
446 |
"outputs": [],
|
@@ -450,119 +359,20 @@
|
|
450 |
},
|
451 |
{
|
452 |
"cell_type": "code",
|
453 |
-
"execution_count":
|
454 |
"id": "7a697cd8-6f39-4d5b-84f4-f08cf58adc4a",
|
455 |
"metadata": {},
|
456 |
-
"outputs": [
|
457 |
-
{
|
458 |
-
"data": {
|
459 |
-
"text/html": [
|
460 |
-
"<div>\n",
|
461 |
-
"<style scoped>\n",
|
462 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
463 |
-
" vertical-align: middle;\n",
|
464 |
-
" }\n",
|
465 |
-
"\n",
|
466 |
-
" .dataframe tbody tr th {\n",
|
467 |
-
" vertical-align: top;\n",
|
468 |
-
" }\n",
|
469 |
-
"\n",
|
470 |
-
" .dataframe thead th {\n",
|
471 |
-
" text-align: right;\n",
|
472 |
-
" }\n",
|
473 |
-
"</style>\n",
|
474 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
475 |
-
" <thead>\n",
|
476 |
-
" <tr style=\"text-align: right;\">\n",
|
477 |
-
" <th></th>\n",
|
478 |
-
" <th>is_hit</th>\n",
|
479 |
-
" <th>retrieved</th>\n",
|
480 |
-
" <th>expected</th>\n",
|
481 |
-
" <th>query</th>\n",
|
482 |
-
" </tr>\n",
|
483 |
-
" </thead>\n",
|
484 |
-
" <tbody>\n",
|
485 |
-
" <tr>\n",
|
486 |
-
" <th>0</th>\n",
|
487 |
-
" <td>False</td>\n",
|
488 |
-
" <td>[5b9cd986-33dc-46f1-abae-e4e1dc9e3629, c3c1804...</td>\n",
|
489 |
-
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
490 |
-
" <td>011d84b2-0c26-4c5c-89d1-2a85498f30e0</td>\n",
|
491 |
-
" </tr>\n",
|
492 |
-
" <tr>\n",
|
493 |
-
" <th>1</th>\n",
|
494 |
-
" <td>True</td>\n",
|
495 |
-
" <td>[6a756f03-638d-480d-8222-1a6bf3790e3c, c3c1804...</td>\n",
|
496 |
-
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
497 |
-
" <td>70c5ddd7-eb86-4a41-af70-a23d2392f48d</td>\n",
|
498 |
-
" </tr>\n",
|
499 |
-
" <tr>\n",
|
500 |
-
" <th>2</th>\n",
|
501 |
-
" <td>True</td>\n",
|
502 |
-
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
503 |
-
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
504 |
-
" <td>a8f4290a-1281-4272-aab9-bf089954a45e</td>\n",
|
505 |
-
" </tr>\n",
|
506 |
-
" <tr>\n",
|
507 |
-
" <th>3</th>\n",
|
508 |
-
" <td>True</td>\n",
|
509 |
-
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
510 |
-
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
511 |
-
" <td>c1ef991a-1cc6-4dbf-b179-2df688c84301</td>\n",
|
512 |
-
" </tr>\n",
|
513 |
-
" <tr>\n",
|
514 |
-
" <th>4</th>\n",
|
515 |
-
" <td>True</td>\n",
|
516 |
-
" <td>[21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8...</td>\n",
|
517 |
-
" <td>21778248-2ed9-4147-bdb0-a60337a1a599</td>\n",
|
518 |
-
" <td>1ce25e78-c1e1-487e-9455-9418baa0b60c</td>\n",
|
519 |
-
" </tr>\n",
|
520 |
-
" </tbody>\n",
|
521 |
-
"</table>\n",
|
522 |
-
"</div>"
|
523 |
-
],
|
524 |
-
"text/plain": [
|
525 |
-
" is_hit retrieved \\\n",
|
526 |
-
"0 False [5b9cd986-33dc-46f1-abae-e4e1dc9e3629, c3c1804... \n",
|
527 |
-
"1 True [6a756f03-638d-480d-8222-1a6bf3790e3c, c3c1804... \n",
|
528 |
-
"2 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
529 |
-
"3 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
530 |
-
"4 True [21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8... \n",
|
531 |
-
"\n",
|
532 |
-
" expected query \n",
|
533 |
-
"0 6a756f03-638d-480d-8222-1a6bf3790e3c 011d84b2-0c26-4c5c-89d1-2a85498f30e0 \n",
|
534 |
-
"1 6a756f03-638d-480d-8222-1a6bf3790e3c 70c5ddd7-eb86-4a41-af70-a23d2392f48d \n",
|
535 |
-
"2 c83dbd8a-7e62-445e-8c12-a8ad604ff65e a8f4290a-1281-4272-aab9-bf089954a45e \n",
|
536 |
-
"3 c83dbd8a-7e62-445e-8c12-a8ad604ff65e c1ef991a-1cc6-4dbf-b179-2df688c84301 \n",
|
537 |
-
"4 21778248-2ed9-4147-bdb0-a60337a1a599 1ce25e78-c1e1-487e-9455-9418baa0b60c "
|
538 |
-
]
|
539 |
-
},
|
540 |
-
"execution_count": 24,
|
541 |
-
"metadata": {},
|
542 |
-
"output_type": "execute_result"
|
543 |
-
}
|
544 |
-
],
|
545 |
"source": [
|
546 |
"df_ada[:5]"
|
547 |
]
|
548 |
},
|
549 |
{
|
550 |
"cell_type": "code",
|
551 |
-
"execution_count":
|
552 |
"id": "3f7186fb-f392-4531-8959-25161e3905e4",
|
553 |
"metadata": {},
|
554 |
-
"outputs": [
|
555 |
-
{
|
556 |
-
"data": {
|
557 |
-
"text/plain": [
|
558 |
-
"(0.955, 200)"
|
559 |
-
]
|
560 |
-
},
|
561 |
-
"execution_count": 27,
|
562 |
-
"metadata": {},
|
563 |
-
"output_type": "execute_result"
|
564 |
-
}
|
565 |
-
],
|
566 |
"source": [
|
567 |
"hit_rate_ada = df_ada[\"is_hit\"].mean()\n",
|
568 |
"hit_rate_ada, len(df_ada)"
|
@@ -586,123 +396,10 @@
|
|
586 |
},
|
587 |
{
|
588 |
"cell_type": "code",
|
589 |
-
"execution_count":
|
590 |
"id": "b2905831-0eb9-4ea7-a0b9-5db286b0965e",
|
591 |
"metadata": {},
|
592 |
-
"outputs": [
|
593 |
-
{
|
594 |
-
"data": {
|
595 |
-
"application/vnd.jupyter.widget-view+json": {
|
596 |
-
"model_id": "784a67a3d51a400cad53c52bb16121fc",
|
597 |
-
"version_major": 2,
|
598 |
-
"version_minor": 0
|
599 |
-
},
|
600 |
-
"text/plain": [
|
601 |
-
"config.json: 0%| | 0.00/743 [00:00<?, ?B/s]"
|
602 |
-
]
|
603 |
-
},
|
604 |
-
"metadata": {},
|
605 |
-
"output_type": "display_data"
|
606 |
-
},
|
607 |
-
{
|
608 |
-
"data": {
|
609 |
-
"application/vnd.jupyter.widget-view+json": {
|
610 |
-
"model_id": "1c0edb74b4154cb49931180def479320",
|
611 |
-
"version_major": 2,
|
612 |
-
"version_minor": 0
|
613 |
-
},
|
614 |
-
"text/plain": [
|
615 |
-
"model.safetensors: 0%| | 0.00/133M [00:00<?, ?B/s]"
|
616 |
-
]
|
617 |
-
},
|
618 |
-
"metadata": {},
|
619 |
-
"output_type": "display_data"
|
620 |
-
},
|
621 |
-
{
|
622 |
-
"data": {
|
623 |
-
"application/vnd.jupyter.widget-view+json": {
|
624 |
-
"model_id": "af9cb2f4d3934e9a991969f0083fa495",
|
625 |
-
"version_major": 2,
|
626 |
-
"version_minor": 0
|
627 |
-
},
|
628 |
-
"text/plain": [
|
629 |
-
"tokenizer_config.json: 0%| | 0.00/366 [00:00<?, ?B/s]"
|
630 |
-
]
|
631 |
-
},
|
632 |
-
"metadata": {},
|
633 |
-
"output_type": "display_data"
|
634 |
-
},
|
635 |
-
{
|
636 |
-
"data": {
|
637 |
-
"application/vnd.jupyter.widget-view+json": {
|
638 |
-
"model_id": "2370d77040d94ffb9a4d8ca2f45faa97",
|
639 |
-
"version_major": 2,
|
640 |
-
"version_minor": 0
|
641 |
-
},
|
642 |
-
"text/plain": [
|
643 |
-
"vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
644 |
-
]
|
645 |
-
},
|
646 |
-
"metadata": {},
|
647 |
-
"output_type": "display_data"
|
648 |
-
},
|
649 |
-
{
|
650 |
-
"data": {
|
651 |
-
"application/vnd.jupyter.widget-view+json": {
|
652 |
-
"model_id": "0b7c293a142d4eaf91673c17222d232a",
|
653 |
-
"version_major": 2,
|
654 |
-
"version_minor": 0
|
655 |
-
},
|
656 |
-
"text/plain": [
|
657 |
-
"tokenizer.json: 0%| | 0.00/711k [00:00<?, ?B/s]"
|
658 |
-
]
|
659 |
-
},
|
660 |
-
"metadata": {},
|
661 |
-
"output_type": "display_data"
|
662 |
-
},
|
663 |
-
{
|
664 |
-
"data": {
|
665 |
-
"application/vnd.jupyter.widget-view+json": {
|
666 |
-
"model_id": "7fcb86d759084084a8e41aec12738e19",
|
667 |
-
"version_major": 2,
|
668 |
-
"version_minor": 0
|
669 |
-
},
|
670 |
-
"text/plain": [
|
671 |
-
"special_tokens_map.json: 0%| | 0.00/125 [00:00<?, ?B/s]"
|
672 |
-
]
|
673 |
-
},
|
674 |
-
"metadata": {},
|
675 |
-
"output_type": "display_data"
|
676 |
-
},
|
677 |
-
{
|
678 |
-
"data": {
|
679 |
-
"application/vnd.jupyter.widget-view+json": {
|
680 |
-
"model_id": "ab4d747b58f74fdb86481b7f936bf0c4",
|
681 |
-
"version_major": 2,
|
682 |
-
"version_minor": 0
|
683 |
-
},
|
684 |
-
"text/plain": [
|
685 |
-
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
686 |
-
]
|
687 |
-
},
|
688 |
-
"metadata": {},
|
689 |
-
"output_type": "display_data"
|
690 |
-
},
|
691 |
-
{
|
692 |
-
"data": {
|
693 |
-
"application/vnd.jupyter.widget-view+json": {
|
694 |
-
"model_id": "baa0bb9ae0da4dfc86c20308477415fa",
|
695 |
-
"version_major": 2,
|
696 |
-
"version_minor": 0
|
697 |
-
},
|
698 |
-
"text/plain": [
|
699 |
-
" 0%| | 0/200 [00:00<?, ?it/s]"
|
700 |
-
]
|
701 |
-
},
|
702 |
-
"metadata": {},
|
703 |
-
"output_type": "display_data"
|
704 |
-
}
|
705 |
-
],
|
706 |
"source": [
|
707 |
"bge = \"local:BAAI/bge-small-en-v1.5\"\n",
|
708 |
"bge_val_results = evaluate(val_dataset, bge)"
|
@@ -710,7 +407,7 @@
|
|
710 |
},
|
711 |
{
|
712 |
"cell_type": "code",
|
713 |
-
"execution_count":
|
714 |
"id": "4e66270d-d3f6-429e-9e48-e8062866aa02",
|
715 |
"metadata": {},
|
716 |
"outputs": [],
|
@@ -720,119 +417,20 @@
|
|
720 |
},
|
721 |
{
|
722 |
"cell_type": "code",
|
723 |
-
"execution_count":
|
724 |
"id": "698c1eb7-eba4-4383-98aa-931fc4ad56a4",
|
725 |
"metadata": {},
|
726 |
-
"outputs": [
|
727 |
-
{
|
728 |
-
"data": {
|
729 |
-
"text/html": [
|
730 |
-
"<div>\n",
|
731 |
-
"<style scoped>\n",
|
732 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
733 |
-
" vertical-align: middle;\n",
|
734 |
-
" }\n",
|
735 |
-
"\n",
|
736 |
-
" .dataframe tbody tr th {\n",
|
737 |
-
" vertical-align: top;\n",
|
738 |
-
" }\n",
|
739 |
-
"\n",
|
740 |
-
" .dataframe thead th {\n",
|
741 |
-
" text-align: right;\n",
|
742 |
-
" }\n",
|
743 |
-
"</style>\n",
|
744 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
745 |
-
" <thead>\n",
|
746 |
-
" <tr style=\"text-align: right;\">\n",
|
747 |
-
" <th></th>\n",
|
748 |
-
" <th>is_hit</th>\n",
|
749 |
-
" <th>retrieved</th>\n",
|
750 |
-
" <th>expected</th>\n",
|
751 |
-
" <th>query</th>\n",
|
752 |
-
" </tr>\n",
|
753 |
-
" </thead>\n",
|
754 |
-
" <tbody>\n",
|
755 |
-
" <tr>\n",
|
756 |
-
" <th>0</th>\n",
|
757 |
-
" <td>False</td>\n",
|
758 |
-
" <td>[69a5696d-0c0e-482a-b6a9-f7b87f19945f, fa650c7...</td>\n",
|
759 |
-
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
760 |
-
" <td>011d84b2-0c26-4c5c-89d1-2a85498f30e0</td>\n",
|
761 |
-
" </tr>\n",
|
762 |
-
" <tr>\n",
|
763 |
-
" <th>1</th>\n",
|
764 |
-
" <td>True</td>\n",
|
765 |
-
" <td>[6a756f03-638d-480d-8222-1a6bf3790e3c, d89a649...</td>\n",
|
766 |
-
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
767 |
-
" <td>70c5ddd7-eb86-4a41-af70-a23d2392f48d</td>\n",
|
768 |
-
" </tr>\n",
|
769 |
-
" <tr>\n",
|
770 |
-
" <th>2</th>\n",
|
771 |
-
" <td>True</td>\n",
|
772 |
-
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
773 |
-
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
774 |
-
" <td>a8f4290a-1281-4272-aab9-bf089954a45e</td>\n",
|
775 |
-
" </tr>\n",
|
776 |
-
" <tr>\n",
|
777 |
-
" <th>3</th>\n",
|
778 |
-
" <td>True</td>\n",
|
779 |
-
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, ad2e3eb...</td>\n",
|
780 |
-
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
781 |
-
" <td>c1ef991a-1cc6-4dbf-b179-2df688c84301</td>\n",
|
782 |
-
" </tr>\n",
|
783 |
-
" <tr>\n",
|
784 |
-
" <th>4</th>\n",
|
785 |
-
" <td>True</td>\n",
|
786 |
-
" <td>[21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8...</td>\n",
|
787 |
-
" <td>21778248-2ed9-4147-bdb0-a60337a1a599</td>\n",
|
788 |
-
" <td>1ce25e78-c1e1-487e-9455-9418baa0b60c</td>\n",
|
789 |
-
" </tr>\n",
|
790 |
-
" </tbody>\n",
|
791 |
-
"</table>\n",
|
792 |
-
"</div>"
|
793 |
-
],
|
794 |
-
"text/plain": [
|
795 |
-
" is_hit retrieved \\\n",
|
796 |
-
"0 False [69a5696d-0c0e-482a-b6a9-f7b87f19945f, fa650c7... \n",
|
797 |
-
"1 True [6a756f03-638d-480d-8222-1a6bf3790e3c, d89a649... \n",
|
798 |
-
"2 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
799 |
-
"3 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, ad2e3eb... \n",
|
800 |
-
"4 True [21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8... \n",
|
801 |
-
"\n",
|
802 |
-
" expected query \n",
|
803 |
-
"0 6a756f03-638d-480d-8222-1a6bf3790e3c 011d84b2-0c26-4c5c-89d1-2a85498f30e0 \n",
|
804 |
-
"1 6a756f03-638d-480d-8222-1a6bf3790e3c 70c5ddd7-eb86-4a41-af70-a23d2392f48d \n",
|
805 |
-
"2 c83dbd8a-7e62-445e-8c12-a8ad604ff65e a8f4290a-1281-4272-aab9-bf089954a45e \n",
|
806 |
-
"3 c83dbd8a-7e62-445e-8c12-a8ad604ff65e c1ef991a-1cc6-4dbf-b179-2df688c84301 \n",
|
807 |
-
"4 21778248-2ed9-4147-bdb0-a60337a1a599 1ce25e78-c1e1-487e-9455-9418baa0b60c "
|
808 |
-
]
|
809 |
-
},
|
810 |
-
"execution_count": 29,
|
811 |
-
"metadata": {},
|
812 |
-
"output_type": "execute_result"
|
813 |
-
}
|
814 |
-
],
|
815 |
"source": [
|
816 |
"df_bge[:5]"
|
817 |
]
|
818 |
},
|
819 |
{
|
820 |
"cell_type": "code",
|
821 |
-
"execution_count":
|
822 |
"id": "9b1cb546-4605-4c48-bf4e-df812db97f13",
|
823 |
"metadata": {},
|
824 |
-
"outputs": [
|
825 |
-
{
|
826 |
-
"data": {
|
827 |
-
"text/plain": [
|
828 |
-
"(0.915, 200)"
|
829 |
-
]
|
830 |
-
},
|
831 |
-
"execution_count": 30,
|
832 |
-
"metadata": {},
|
833 |
-
"output_type": "execute_result"
|
834 |
-
}
|
835 |
-
],
|
836 |
"source": [
|
837 |
"hit_rate_bge = df_bge[\"is_hit\"].mean()\n",
|
838 |
"hit_rate_bge, len(df_bge)"
|
@@ -848,21 +446,10 @@
|
|
848 |
},
|
849 |
{
|
850 |
"cell_type": "code",
|
851 |
-
"execution_count":
|
852 |
"id": "1b12ca3d-6ca2-41f6-9ddb-b12b9354ca83",
|
853 |
"metadata": {},
|
854 |
-
"outputs": [
|
855 |
-
{
|
856 |
-
"data": {
|
857 |
-
"text/plain": [
|
858 |
-
"0.7955697668171072"
|
859 |
-
]
|
860 |
-
},
|
861 |
-
"execution_count": 31,
|
862 |
-
"metadata": {},
|
863 |
-
"output_type": "execute_result"
|
864 |
-
}
|
865 |
-
],
|
866 |
"source": [
|
867 |
"evaluate_st(val_dataset, \"BAAI/bge-small-en-v1.5\", name=\"bge\")"
|
868 |
]
|
@@ -893,47 +480,18 @@
|
|
893 |
},
|
894 |
{
|
895 |
"cell_type": "code",
|
896 |
-
"execution_count":
|
897 |
"id": "bd42b288-1f1f-41aa-9fd4-1ae4b1df462b",
|
898 |
"metadata": {},
|
899 |
-
"outputs": [
|
900 |
-
{
|
901 |
-
"data": {
|
902 |
-
"application/vnd.jupyter.widget-view+json": {
|
903 |
-
"model_id": "47dbb97a78c04f7f8fc1264c1013b5ea",
|
904 |
-
"version_major": 2,
|
905 |
-
"version_minor": 0
|
906 |
-
},
|
907 |
-
"text/plain": [
|
908 |
-
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
909 |
-
]
|
910 |
-
},
|
911 |
-
"metadata": {},
|
912 |
-
"output_type": "display_data"
|
913 |
-
},
|
914 |
-
{
|
915 |
-
"data": {
|
916 |
-
"application/vnd.jupyter.widget-view+json": {
|
917 |
-
"model_id": "31c9e93debe34cc790bf32e579134a1a",
|
918 |
-
"version_major": 2,
|
919 |
-
"version_minor": 0
|
920 |
-
},
|
921 |
-
"text/plain": [
|
922 |
-
" 0%| | 0/200 [00:00<?, ?it/s]"
|
923 |
-
]
|
924 |
-
},
|
925 |
-
"metadata": {},
|
926 |
-
"output_type": "display_data"
|
927 |
-
}
|
928 |
-
],
|
929 |
"source": [
|
930 |
-
"finetuned = \"local
|
931 |
"val_results_finetuned = evaluate(val_dataset, finetuned)"
|
932 |
]
|
933 |
},
|
934 |
{
|
935 |
"cell_type": "code",
|
936 |
-
"execution_count":
|
937 |
"id": "b1d7112d-b1b8-47db-8a4b-6c024ef99dd6",
|
938 |
"metadata": {},
|
939 |
"outputs": [],
|
@@ -943,21 +501,10 @@
|
|
943 |
},
|
944 |
{
|
945 |
"cell_type": "code",
|
946 |
-
"execution_count":
|
947 |
"id": "62a4dd29-0631-4c5b-88e1-be43d48e1043",
|
948 |
"metadata": {},
|
949 |
-
"outputs": [
|
950 |
-
{
|
951 |
-
"data": {
|
952 |
-
"text/plain": [
|
953 |
-
"0.97"
|
954 |
-
]
|
955 |
-
},
|
956 |
-
"execution_count": 34,
|
957 |
-
"metadata": {},
|
958 |
-
"output_type": "execute_result"
|
959 |
-
}
|
960 |
-
],
|
961 |
"source": [
|
962 |
"hit_rate_finetuned = df_finetuned[\"is_hit\"].mean()\n",
|
963 |
"hit_rate_finetuned"
|
@@ -965,23 +512,12 @@
|
|
965 |
},
|
966 |
{
|
967 |
"cell_type": "code",
|
968 |
-
"execution_count":
|
969 |
"id": "4332594b-c861-40fb-a58b-ba36717d0519",
|
970 |
"metadata": {},
|
971 |
-
"outputs": [
|
972 |
-
{
|
973 |
-
"data": {
|
974 |
-
"text/plain": [
|
975 |
-
"0.8573385846534823"
|
976 |
-
]
|
977 |
-
},
|
978 |
-
"execution_count": 35,
|
979 |
-
"metadata": {},
|
980 |
-
"output_type": "execute_result"
|
981 |
-
}
|
982 |
-
],
|
983 |
"source": [
|
984 |
-
"evaluate_st(val_dataset, \"
|
985 |
]
|
986 |
},
|
987 |
{
|
@@ -1002,7 +538,7 @@
|
|
1002 |
},
|
1003 |
{
|
1004 |
"cell_type": "code",
|
1005 |
-
"execution_count":
|
1006 |
"id": "3ca46cff-b186-463a-847d-a86c310268ec",
|
1007 |
"metadata": {},
|
1008 |
"outputs": [],
|
@@ -1014,68 +550,10 @@
|
|
1014 |
},
|
1015 |
{
|
1016 |
"cell_type": "code",
|
1017 |
-
"execution_count":
|
1018 |
"id": "d1d3053e-2395-48a0-af59-fd27180e1e7b",
|
1019 |
"metadata": {},
|
1020 |
-
"outputs": [
|
1021 |
-
{
|
1022 |
-
"data": {
|
1023 |
-
"text/html": [
|
1024 |
-
"<div>\n",
|
1025 |
-
"<style scoped>\n",
|
1026 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1027 |
-
" vertical-align: middle;\n",
|
1028 |
-
" }\n",
|
1029 |
-
"\n",
|
1030 |
-
" .dataframe tbody tr th {\n",
|
1031 |
-
" vertical-align: top;\n",
|
1032 |
-
" }\n",
|
1033 |
-
"\n",
|
1034 |
-
" .dataframe thead th {\n",
|
1035 |
-
" text-align: right;\n",
|
1036 |
-
" }\n",
|
1037 |
-
"</style>\n",
|
1038 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1039 |
-
" <thead>\n",
|
1040 |
-
" <tr style=\"text-align: right;\">\n",
|
1041 |
-
" <th></th>\n",
|
1042 |
-
" <th>is_hit</th>\n",
|
1043 |
-
" </tr>\n",
|
1044 |
-
" <tr>\n",
|
1045 |
-
" <th>model</th>\n",
|
1046 |
-
" <th></th>\n",
|
1047 |
-
" </tr>\n",
|
1048 |
-
" </thead>\n",
|
1049 |
-
" <tbody>\n",
|
1050 |
-
" <tr>\n",
|
1051 |
-
" <th>ada</th>\n",
|
1052 |
-
" <td>0.955</td>\n",
|
1053 |
-
" </tr>\n",
|
1054 |
-
" <tr>\n",
|
1055 |
-
" <th>bge</th>\n",
|
1056 |
-
" <td>0.915</td>\n",
|
1057 |
-
" </tr>\n",
|
1058 |
-
" <tr>\n",
|
1059 |
-
" <th>fine_tuned</th>\n",
|
1060 |
-
" <td>0.970</td>\n",
|
1061 |
-
" </tr>\n",
|
1062 |
-
" </tbody>\n",
|
1063 |
-
"</table>\n",
|
1064 |
-
"</div>"
|
1065 |
-
],
|
1066 |
-
"text/plain": [
|
1067 |
-
" is_hit\n",
|
1068 |
-
"model \n",
|
1069 |
-
"ada 0.955\n",
|
1070 |
-
"bge 0.915\n",
|
1071 |
-
"fine_tuned 0.970"
|
1072 |
-
]
|
1073 |
-
},
|
1074 |
-
"execution_count": 37,
|
1075 |
-
"metadata": {},
|
1076 |
-
"output_type": "execute_result"
|
1077 |
-
}
|
1078 |
-
],
|
1079 |
"source": [
|
1080 |
"df_all = pd.concat([df_ada, df_bge, df_finetuned])\n",
|
1081 |
"df_all.groupby(\"model\").mean(\"is_hit\")"
|
@@ -1091,16 +569,16 @@
|
|
1091 |
},
|
1092 |
{
|
1093 |
"cell_type": "code",
|
1094 |
-
"execution_count":
|
1095 |
"id": "032cac38-c856-4aeb-9bbb-6d70ed53c614",
|
1096 |
"metadata": {},
|
1097 |
"outputs": [],
|
1098 |
"source": [
|
1099 |
"df_st_bge = pd.read_csv(\n",
|
1100 |
-
" \"results/Information-Retrieval_evaluation_bge_results.csv\"\n",
|
1101 |
")\n",
|
1102 |
"df_st_finetuned = pd.read_csv(\n",
|
1103 |
-
" \"results/Information-Retrieval_evaluation_finetuned_results.csv\"\n",
|
1104 |
")"
|
1105 |
]
|
1106 |
},
|
@@ -1114,176 +592,10 @@
|
|
1114 |
},
|
1115 |
{
|
1116 |
"cell_type": "code",
|
1117 |
-
"execution_count":
|
1118 |
"id": "d2975262-c486-4a9a-a61f-ea535203a0f3",
|
1119 |
"metadata": {},
|
1120 |
-
"outputs": [
|
1121 |
-
{
|
1122 |
-
"data": {
|
1123 |
-
"text/html": [
|
1124 |
-
"<div>\n",
|
1125 |
-
"<style scoped>\n",
|
1126 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1127 |
-
" vertical-align: middle;\n",
|
1128 |
-
" }\n",
|
1129 |
-
"\n",
|
1130 |
-
" .dataframe tbody tr th {\n",
|
1131 |
-
" vertical-align: top;\n",
|
1132 |
-
" }\n",
|
1133 |
-
"\n",
|
1134 |
-
" .dataframe thead th {\n",
|
1135 |
-
" text-align: right;\n",
|
1136 |
-
" }\n",
|
1137 |
-
"</style>\n",
|
1138 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1139 |
-
" <thead>\n",
|
1140 |
-
" <tr style=\"text-align: right;\">\n",
|
1141 |
-
" <th></th>\n",
|
1142 |
-
" <th>epoch</th>\n",
|
1143 |
-
" <th>steps</th>\n",
|
1144 |
-
" <th>cos_sim-Accuracy@1</th>\n",
|
1145 |
-
" <th>cos_sim-Accuracy@3</th>\n",
|
1146 |
-
" <th>cos_sim-Accuracy@5</th>\n",
|
1147 |
-
" <th>cos_sim-Accuracy@10</th>\n",
|
1148 |
-
" <th>cos_sim-Precision@1</th>\n",
|
1149 |
-
" <th>cos_sim-Recall@1</th>\n",
|
1150 |
-
" <th>cos_sim-Precision@3</th>\n",
|
1151 |
-
" <th>cos_sim-Recall@3</th>\n",
|
1152 |
-
" <th>...</th>\n",
|
1153 |
-
" <th>dot_score-Recall@1</th>\n",
|
1154 |
-
" <th>dot_score-Precision@3</th>\n",
|
1155 |
-
" <th>dot_score-Recall@3</th>\n",
|
1156 |
-
" <th>dot_score-Precision@5</th>\n",
|
1157 |
-
" <th>dot_score-Recall@5</th>\n",
|
1158 |
-
" <th>dot_score-Precision@10</th>\n",
|
1159 |
-
" <th>dot_score-Recall@10</th>\n",
|
1160 |
-
" <th>dot_score-MRR@10</th>\n",
|
1161 |
-
" <th>dot_score-NDCG@10</th>\n",
|
1162 |
-
" <th>dot_score-MAP@100</th>\n",
|
1163 |
-
" </tr>\n",
|
1164 |
-
" <tr>\n",
|
1165 |
-
" <th>model</th>\n",
|
1166 |
-
" <th></th>\n",
|
1167 |
-
" <th></th>\n",
|
1168 |
-
" <th></th>\n",
|
1169 |
-
" <th></th>\n",
|
1170 |
-
" <th></th>\n",
|
1171 |
-
" <th></th>\n",
|
1172 |
-
" <th></th>\n",
|
1173 |
-
" <th></th>\n",
|
1174 |
-
" <th></th>\n",
|
1175 |
-
" <th></th>\n",
|
1176 |
-
" <th></th>\n",
|
1177 |
-
" <th></th>\n",
|
1178 |
-
" <th></th>\n",
|
1179 |
-
" <th></th>\n",
|
1180 |
-
" <th></th>\n",
|
1181 |
-
" <th></th>\n",
|
1182 |
-
" <th></th>\n",
|
1183 |
-
" <th></th>\n",
|
1184 |
-
" <th></th>\n",
|
1185 |
-
" <th></th>\n",
|
1186 |
-
" <th></th>\n",
|
1187 |
-
" </tr>\n",
|
1188 |
-
" </thead>\n",
|
1189 |
-
" <tbody>\n",
|
1190 |
-
" <tr>\n",
|
1191 |
-
" <th>bge</th>\n",
|
1192 |
-
" <td>-1</td>\n",
|
1193 |
-
" <td>-1</td>\n",
|
1194 |
-
" <td>0.705</td>\n",
|
1195 |
-
" <td>0.865</td>\n",
|
1196 |
-
" <td>0.92</td>\n",
|
1197 |
-
" <td>0.96</td>\n",
|
1198 |
-
" <td>0.705</td>\n",
|
1199 |
-
" <td>0.705</td>\n",
|
1200 |
-
" <td>0.288333</td>\n",
|
1201 |
-
" <td>0.865</td>\n",
|
1202 |
-
" <td>...</td>\n",
|
1203 |
-
" <td>0.705</td>\n",
|
1204 |
-
" <td>0.288333</td>\n",
|
1205 |
-
" <td>0.865</td>\n",
|
1206 |
-
" <td>0.184</td>\n",
|
1207 |
-
" <td>0.92</td>\n",
|
1208 |
-
" <td>0.096</td>\n",
|
1209 |
-
" <td>0.96</td>\n",
|
1210 |
-
" <td>0.792935</td>\n",
|
1211 |
-
" <td>0.833595</td>\n",
|
1212 |
-
" <td>0.795570</td>\n",
|
1213 |
-
" </tr>\n",
|
1214 |
-
" <tr>\n",
|
1215 |
-
" <th>fine_tuned</th>\n",
|
1216 |
-
" <td>-1</td>\n",
|
1217 |
-
" <td>-1</td>\n",
|
1218 |
-
" <td>0.790</td>\n",
|
1219 |
-
" <td>0.900</td>\n",
|
1220 |
-
" <td>0.97</td>\n",
|
1221 |
-
" <td>0.98</td>\n",
|
1222 |
-
" <td>0.790</td>\n",
|
1223 |
-
" <td>0.790</td>\n",
|
1224 |
-
" <td>0.300000</td>\n",
|
1225 |
-
" <td>0.900</td>\n",
|
1226 |
-
" <td>...</td>\n",
|
1227 |
-
" <td>0.790</td>\n",
|
1228 |
-
" <td>0.300000</td>\n",
|
1229 |
-
" <td>0.900</td>\n",
|
1230 |
-
" <td>0.194</td>\n",
|
1231 |
-
" <td>0.97</td>\n",
|
1232 |
-
" <td>0.098</td>\n",
|
1233 |
-
" <td>0.98</td>\n",
|
1234 |
-
" <td>0.856264</td>\n",
|
1235 |
-
" <td>0.886738</td>\n",
|
1236 |
-
" <td>0.857339</td>\n",
|
1237 |
-
" </tr>\n",
|
1238 |
-
" </tbody>\n",
|
1239 |
-
"</table>\n",
|
1240 |
-
"<p>2 rows × 32 columns</p>\n",
|
1241 |
-
"</div>"
|
1242 |
-
],
|
1243 |
-
"text/plain": [
|
1244 |
-
" epoch steps cos_sim-Accuracy@1 cos_sim-Accuracy@3 \\\n",
|
1245 |
-
"model \n",
|
1246 |
-
"bge -1 -1 0.705 0.865 \n",
|
1247 |
-
"fine_tuned -1 -1 0.790 0.900 \n",
|
1248 |
-
"\n",
|
1249 |
-
" cos_sim-Accuracy@5 cos_sim-Accuracy@10 cos_sim-Precision@1 \\\n",
|
1250 |
-
"model \n",
|
1251 |
-
"bge 0.92 0.96 0.705 \n",
|
1252 |
-
"fine_tuned 0.97 0.98 0.790 \n",
|
1253 |
-
"\n",
|
1254 |
-
" cos_sim-Recall@1 cos_sim-Precision@3 cos_sim-Recall@3 ... \\\n",
|
1255 |
-
"model ... \n",
|
1256 |
-
"bge 0.705 0.288333 0.865 ... \n",
|
1257 |
-
"fine_tuned 0.790 0.300000 0.900 ... \n",
|
1258 |
-
"\n",
|
1259 |
-
" dot_score-Recall@1 dot_score-Precision@3 dot_score-Recall@3 \\\n",
|
1260 |
-
"model \n",
|
1261 |
-
"bge 0.705 0.288333 0.865 \n",
|
1262 |
-
"fine_tuned 0.790 0.300000 0.900 \n",
|
1263 |
-
"\n",
|
1264 |
-
" dot_score-Precision@5 dot_score-Recall@5 dot_score-Precision@10 \\\n",
|
1265 |
-
"model \n",
|
1266 |
-
"bge 0.184 0.92 0.096 \n",
|
1267 |
-
"fine_tuned 0.194 0.97 0.098 \n",
|
1268 |
-
"\n",
|
1269 |
-
" dot_score-Recall@10 dot_score-MRR@10 dot_score-NDCG@10 \\\n",
|
1270 |
-
"model \n",
|
1271 |
-
"bge 0.96 0.792935 0.833595 \n",
|
1272 |
-
"fine_tuned 0.98 0.856264 0.886738 \n",
|
1273 |
-
"\n",
|
1274 |
-
" dot_score-MAP@100 \n",
|
1275 |
-
"model \n",
|
1276 |
-
"bge 0.795570 \n",
|
1277 |
-
"fine_tuned 0.857339 \n",
|
1278 |
-
"\n",
|
1279 |
-
"[2 rows x 32 columns]"
|
1280 |
-
]
|
1281 |
-
},
|
1282 |
-
"execution_count": 39,
|
1283 |
-
"metadata": {},
|
1284 |
-
"output_type": "execute_result"
|
1285 |
-
}
|
1286 |
-
],
|
1287 |
"source": [
|
1288 |
"df_st_bge[\"model\"] = \"bge\"\n",
|
1289 |
"df_st_finetuned[\"model\"] = \"fine_tuned\"\n",
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
"id": "ca2c990f-5215-4ab9-8143-1d79db28edc6",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
|
|
16 |
},
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
"id": "2c535ad7-7846-4bef-8ba8-33e182490c3d",
|
21 |
"metadata": {},
|
22 |
"outputs": [],
|
|
|
30 |
},
|
31 |
{
|
32 |
"cell_type": "code",
|
33 |
+
"execution_count": null,
|
34 |
"id": "25f0c7a3-c52f-4417-aec8-4b6cfbf7a1b5",
|
35 |
"metadata": {},
|
36 |
"outputs": [],
|
|
|
44 |
},
|
45 |
{
|
46 |
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
"id": "62f4d7f0-748a-405e-b5f1-6520fd02bedc",
|
49 |
"metadata": {},
|
50 |
"outputs": [],
|
|
|
56 |
},
|
57 |
{
|
58 |
"cell_type": "code",
|
59 |
+
"execution_count": null,
|
60 |
"id": "12527049-a5cb-423c-8de5-099aee970c85",
|
61 |
"metadata": {},
|
62 |
"outputs": [],
|
|
|
66 |
},
|
67 |
{
|
68 |
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
"id": "abde5e6c-3474-460c-9fac-4f3352c38b53",
|
71 |
"metadata": {},
|
72 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
"source": [
|
74 |
"import llama_index\n",
|
75 |
"print(llama_index.__version__)"
|
|
|
85 |
},
|
86 |
{
|
87 |
"cell_type": "code",
|
88 |
+
"execution_count": null,
|
89 |
"id": "978cf71f-1ce7-4598-92fe-18fe22ca37c6",
|
90 |
"metadata": {},
|
91 |
"outputs": [],
|
|
|
107 |
},
|
108 |
{
|
109 |
"cell_type": "code",
|
110 |
+
"execution_count": null,
|
111 |
"id": "26f614c8-eb45-4cc1-b067-2c7299587982",
|
112 |
"metadata": {},
|
113 |
"outputs": [],
|
|
|
140 |
},
|
141 |
{
|
142 |
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
"id": "84cc4308-8ac4-4eba-9478-b81d5b645c48",
|
145 |
"metadata": {},
|
146 |
"outputs": [],
|
|
|
176 |
},
|
177 |
{
|
178 |
"cell_type": "code",
|
179 |
+
"execution_count": null,
|
180 |
"id": "8f17c832-e9ae-477b-8bf7-a9c8410f1ed8",
|
181 |
"metadata": {},
|
182 |
"outputs": [],
|
|
|
184 |
"finetune_engine = SentenceTransformersFinetuneEngine(\n",
|
185 |
" train_dataset,\n",
|
186 |
" model_id=\"BAAI/bge-small-en-v1.5\",\n",
|
187 |
+
" model_output_path=\"../models/fine-tuned-embeddings\",\n",
|
188 |
" batch_size=5,\n",
|
189 |
" val_dataset=val_dataset\n",
|
190 |
")"
|
|
|
192 |
},
|
193 |
{
|
194 |
"cell_type": "code",
|
195 |
+
"execution_count": null,
|
196 |
"id": "a6498d0b-da9a-4f7f-8c85-c9bf4d772c72",
|
197 |
"metadata": {},
|
198 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
"source": [
|
200 |
"finetune_engine.finetune()"
|
201 |
]
|
202 |
},
|
203 |
{
|
204 |
"cell_type": "code",
|
205 |
+
"execution_count": null,
|
206 |
"id": "e057b405-aa0e-4e78-91e0-9bf40f01c1a9",
|
207 |
"metadata": {},
|
208 |
"outputs": [],
|
|
|
212 |
},
|
213 |
{
|
214 |
"cell_type": "code",
|
215 |
+
"execution_count": null,
|
216 |
"id": "72d9f97a-0902-4e65-8459-b34613e419f6",
|
217 |
"metadata": {},
|
218 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
"source": [
|
220 |
"embed_model"
|
221 |
]
|
|
|
223 |
{
|
224 |
"cell_type": "code",
|
225 |
"execution_count": null,
|
226 |
+
"id": "c4f4058c-edbb-43c4-bebe-8c36d410e819",
|
227 |
"metadata": {},
|
228 |
"outputs": [],
|
229 |
"source": []
|
230 |
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": null,
|
234 |
+
"id": "97ebae28-80ef-4f35-92ce-a370776e3b22",
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [],
|
237 |
+
"source": [
|
238 |
+
"fine_tuned_embed_model = SentenceTransformer(\"../models/fine-tuned-embeddings\")"
|
239 |
+
]
|
240 |
+
},
|
241 |
{
|
242 |
"cell_type": "code",
|
243 |
"execution_count": null,
|
|
|
248 |
},
|
249 |
{
|
250 |
"cell_type": "code",
|
251 |
+
"execution_count": null,
|
252 |
"id": "ac4a1a5b-974d-452e-8507-0950c962f9b2",
|
253 |
"metadata": {},
|
254 |
"outputs": [],
|
|
|
289 |
},
|
290 |
{
|
291 |
"cell_type": "code",
|
292 |
+
"execution_count": null,
|
293 |
"id": "a53cf893-ce9f-4d9d-ad4a-e9e17fb058d3",
|
294 |
"metadata": {},
|
295 |
"outputs": [],
|
|
|
307 |
" queries, corpus, relevant_docs, name=name\n",
|
308 |
" )\n",
|
309 |
" model = SentenceTransformer(model_id)\n",
|
310 |
+
" output_path = \"../results/\"\n",
|
311 |
" Path(output_path).mkdir(exist_ok=True, parents=True)\n",
|
312 |
" return evaluator(model, output_path=output_path)"
|
313 |
]
|
|
|
338 |
},
|
339 |
{
|
340 |
"cell_type": "code",
|
341 |
+
"execution_count": null,
|
342 |
"id": "91f057aa-4b59-48ea-b3d5-23012a4d487f",
|
343 |
"metadata": {},
|
344 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
"source": [
|
346 |
"ada = OpenAIEmbedding()\n",
|
347 |
"ada_val_results = evaluate(val_dataset, ada)"
|
|
|
349 |
},
|
350 |
{
|
351 |
"cell_type": "code",
|
352 |
+
"execution_count": null,
|
353 |
"id": "5d2f59c6-75d3-4970-bac3-dfe0eef00efe",
|
354 |
"metadata": {},
|
355 |
"outputs": [],
|
|
|
359 |
},
|
360 |
{
|
361 |
"cell_type": "code",
|
362 |
+
"execution_count": null,
|
363 |
"id": "7a697cd8-6f39-4d5b-84f4-f08cf58adc4a",
|
364 |
"metadata": {},
|
365 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
"source": [
|
367 |
"df_ada[:5]"
|
368 |
]
|
369 |
},
|
370 |
{
|
371 |
"cell_type": "code",
|
372 |
+
"execution_count": null,
|
373 |
"id": "3f7186fb-f392-4531-8959-25161e3905e4",
|
374 |
"metadata": {},
|
375 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
"source": [
|
377 |
"hit_rate_ada = df_ada[\"is_hit\"].mean()\n",
|
378 |
"hit_rate_ada, len(df_ada)"
|
|
|
396 |
},
|
397 |
{
|
398 |
"cell_type": "code",
|
399 |
+
"execution_count": null,
|
400 |
"id": "b2905831-0eb9-4ea7-a0b9-5db286b0965e",
|
401 |
"metadata": {},
|
402 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
"source": [
|
404 |
"bge = \"local:BAAI/bge-small-en-v1.5\"\n",
|
405 |
"bge_val_results = evaluate(val_dataset, bge)"
|
|
|
407 |
},
|
408 |
{
|
409 |
"cell_type": "code",
|
410 |
+
"execution_count": null,
|
411 |
"id": "4e66270d-d3f6-429e-9e48-e8062866aa02",
|
412 |
"metadata": {},
|
413 |
"outputs": [],
|
|
|
417 |
},
|
418 |
{
|
419 |
"cell_type": "code",
|
420 |
+
"execution_count": null,
|
421 |
"id": "698c1eb7-eba4-4383-98aa-931fc4ad56a4",
|
422 |
"metadata": {},
|
423 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
"source": [
|
425 |
"df_bge[:5]"
|
426 |
]
|
427 |
},
|
428 |
{
|
429 |
"cell_type": "code",
|
430 |
+
"execution_count": null,
|
431 |
"id": "9b1cb546-4605-4c48-bf4e-df812db97f13",
|
432 |
"metadata": {},
|
433 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
"source": [
|
435 |
"hit_rate_bge = df_bge[\"is_hit\"].mean()\n",
|
436 |
"hit_rate_bge, len(df_bge)"
|
|
|
446 |
},
|
447 |
{
|
448 |
"cell_type": "code",
|
449 |
+
"execution_count": null,
|
450 |
"id": "1b12ca3d-6ca2-41f6-9ddb-b12b9354ca83",
|
451 |
"metadata": {},
|
452 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
"source": [
|
454 |
"evaluate_st(val_dataset, \"BAAI/bge-small-en-v1.5\", name=\"bge\")"
|
455 |
]
|
|
|
480 |
},
|
481 |
{
|
482 |
"cell_type": "code",
|
483 |
+
"execution_count": null,
|
484 |
"id": "bd42b288-1f1f-41aa-9fd4-1ae4b1df462b",
|
485 |
"metadata": {},
|
486 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
487 |
"source": [
|
488 |
+
"finetuned = \"local:../models/fine-tuned-embeddings\"\n",
|
489 |
"val_results_finetuned = evaluate(val_dataset, finetuned)"
|
490 |
]
|
491 |
},
|
492 |
{
|
493 |
"cell_type": "code",
|
494 |
+
"execution_count": null,
|
495 |
"id": "b1d7112d-b1b8-47db-8a4b-6c024ef99dd6",
|
496 |
"metadata": {},
|
497 |
"outputs": [],
|
|
|
501 |
},
|
502 |
{
|
503 |
"cell_type": "code",
|
504 |
+
"execution_count": null,
|
505 |
"id": "62a4dd29-0631-4c5b-88e1-be43d48e1043",
|
506 |
"metadata": {},
|
507 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
508 |
"source": [
|
509 |
"hit_rate_finetuned = df_finetuned[\"is_hit\"].mean()\n",
|
510 |
"hit_rate_finetuned"
|
|
|
512 |
},
|
513 |
{
|
514 |
"cell_type": "code",
|
515 |
+
"execution_count": null,
|
516 |
"id": "4332594b-c861-40fb-a58b-ba36717d0519",
|
517 |
"metadata": {},
|
518 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
"source": [
|
520 |
+
"evaluate_st(val_dataset, \"../models/fine-tuned-embeddings\", name=\"finetuned\")"
|
521 |
]
|
522 |
},
|
523 |
{
|
|
|
538 |
},
|
539 |
{
|
540 |
"cell_type": "code",
|
541 |
+
"execution_count": null,
|
542 |
"id": "3ca46cff-b186-463a-847d-a86c310268ec",
|
543 |
"metadata": {},
|
544 |
"outputs": [],
|
|
|
550 |
},
|
551 |
{
|
552 |
"cell_type": "code",
|
553 |
+
"execution_count": null,
|
554 |
"id": "d1d3053e-2395-48a0-af59-fd27180e1e7b",
|
555 |
"metadata": {},
|
556 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
"source": [
|
558 |
"df_all = pd.concat([df_ada, df_bge, df_finetuned])\n",
|
559 |
"df_all.groupby(\"model\").mean(\"is_hit\")"
|
|
|
569 |
},
|
570 |
{
|
571 |
"cell_type": "code",
|
572 |
+
"execution_count": null,
|
573 |
"id": "032cac38-c856-4aeb-9bbb-6d70ed53c614",
|
574 |
"metadata": {},
|
575 |
"outputs": [],
|
576 |
"source": [
|
577 |
"df_st_bge = pd.read_csv(\n",
|
578 |
+
" \"../results/Information-Retrieval_evaluation_bge_results.csv\"\n",
|
579 |
")\n",
|
580 |
"df_st_finetuned = pd.read_csv(\n",
|
581 |
+
" \"../results/Information-Retrieval_evaluation_finetuned_results.csv\"\n",
|
582 |
")"
|
583 |
]
|
584 |
},
|
|
|
592 |
},
|
593 |
{
|
594 |
"cell_type": "code",
|
595 |
+
"execution_count": null,
|
596 |
"id": "d2975262-c486-4a9a-a61f-ea535203a0f3",
|
597 |
"metadata": {},
|
598 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
"source": [
|
600 |
"df_st_bge[\"model\"] = \"bge\"\n",
|
601 |
"df_st_finetuned[\"model\"] = \"fine_tuned\"\n",
|
notebooks/persisted-embedding-model.ipynb
CHANGED
@@ -483,7 +483,7 @@
|
|
483 |
},
|
484 |
"outputs": [],
|
485 |
"source": [
|
486 |
-
"r_list[
|
487 |
]
|
488 |
},
|
489 |
{
|
@@ -551,6 +551,18 @@
|
|
551 |
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")"
|
552 |
]
|
553 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
554 |
{
|
555 |
"cell_type": "code",
|
556 |
"execution_count": null,
|
@@ -614,6 +626,41 @@
|
|
614 |
")"
|
615 |
]
|
616 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
617 |
{
|
618 |
"cell_type": "code",
|
619 |
"execution_count": null,
|
@@ -653,6 +700,182 @@
|
|
653 |
"metadata": {},
|
654 |
"outputs": [],
|
655 |
"source": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
}
|
657 |
],
|
658 |
"metadata": {
|
|
|
483 |
},
|
484 |
"outputs": [],
|
485 |
"source": [
|
486 |
+
"r_list[0].to_dict()"
|
487 |
]
|
488 |
},
|
489 |
{
|
|
|
551 |
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")"
|
552 |
]
|
553 |
},
|
554 |
+
{
|
555 |
+
"cell_type": "code",
|
556 |
+
"execution_count": null,
|
557 |
+
"id": "6c98a573-b401-4191-99c0-1216833bb566",
|
558 |
+
"metadata": {},
|
559 |
+
"outputs": [],
|
560 |
+
"source": [
|
561 |
+
"from llama_index.llms import OpenAI\n",
|
562 |
+
"from llama_index.memory import ChatMemoryBuffer\n",
|
563 |
+
"llm = OpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0.0)"
|
564 |
+
]
|
565 |
+
},
|
566 |
{
|
567 |
"cell_type": "code",
|
568 |
"execution_count": null,
|
|
|
626 |
")"
|
627 |
]
|
628 |
},
|
629 |
+
{
|
630 |
+
"cell_type": "code",
|
631 |
+
"execution_count": null,
|
632 |
+
"id": "73ba6d06-ba69-4b5e-962a-9cf7d2dc4d94",
|
633 |
+
"metadata": {},
|
634 |
+
"outputs": [],
|
635 |
+
"source": []
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"cell_type": "code",
|
639 |
+
"execution_count": null,
|
640 |
+
"id": "ab778a5d-d438-4f39-88f5-c67a1f1d575e",
|
641 |
+
"metadata": {},
|
642 |
+
"outputs": [],
|
643 |
+
"source": [
|
644 |
+
"system_content = (\"You are a helpful study assistant. \"\n",
|
645 |
+
" \"You do not respond as 'User' or pretend to be 'User'. \"\n",
|
646 |
+
" \"You only respond once as 'Assistant'.\"\n",
|
647 |
+
")\n",
|
648 |
+
"memory = ChatMemoryBuffer.from_defaults(token_limit=15000)\n",
|
649 |
+
"chat_engine = index.as_chat_engine(\n",
|
650 |
+
" chat_mode=\"context\",\n",
|
651 |
+
" memory=memory,\n",
|
652 |
+
" system_prompt=system_content\n",
|
653 |
+
")"
|
654 |
+
]
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"cell_type": "code",
|
658 |
+
"execution_count": null,
|
659 |
+
"id": "8d6de457-43b5-4ea7-b5e3-150abe918671",
|
660 |
+
"metadata": {},
|
661 |
+
"outputs": [],
|
662 |
+
"source": []
|
663 |
+
},
|
664 |
{
|
665 |
"cell_type": "code",
|
666 |
"execution_count": null,
|
|
|
700 |
"metadata": {},
|
701 |
"outputs": [],
|
702 |
"source": []
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"cell_type": "code",
|
706 |
+
"execution_count": null,
|
707 |
+
"id": "301e8270-783d-4942-a05f-9683ca96fbda",
|
708 |
+
"metadata": {},
|
709 |
+
"outputs": [],
|
710 |
+
"source": []
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"cell_type": "markdown",
|
714 |
+
"id": "506672cc-f447-414d-9c57-cd62a964dea8",
|
715 |
+
"metadata": {},
|
716 |
+
"source": [
|
717 |
+
"### ChromaDB method - load vectorstore with LLM"
|
718 |
+
]
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"cell_type": "code",
|
722 |
+
"execution_count": null,
|
723 |
+
"id": "d9c4a50e-915c-492d-be69-e4ebfd16744a",
|
724 |
+
"metadata": {},
|
725 |
+
"outputs": [],
|
726 |
+
"source": [
|
727 |
+
"import chromadb\n",
|
728 |
+
"from llama_index import VectorStoreIndex, SimpleDirectoryReader\n",
|
729 |
+
"from llama_index.vector_stores import ChromaVectorStore\n",
|
730 |
+
"from llama_index.storage.storage_context import StorageContext\n",
|
731 |
+
"from llama_index import ServiceContext\n",
|
732 |
+
"from llama_index import Document\n",
|
733 |
+
"\n",
|
734 |
+
"from llama_index.embeddings import HuggingFaceEmbedding\n",
|
735 |
+
"\n",
|
736 |
+
"import time"
|
737 |
+
]
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"cell_type": "code",
|
741 |
+
"execution_count": null,
|
742 |
+
"id": "97680b61-d87a-426d-9177-3670688e8e0c",
|
743 |
+
"metadata": {},
|
744 |
+
"outputs": [],
|
745 |
+
"source": [
|
746 |
+
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")"
|
747 |
+
]
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"cell_type": "code",
|
751 |
+
"execution_count": null,
|
752 |
+
"id": "808fa41d-2b3f-40ab-8cd3-01565b6d6e35",
|
753 |
+
"metadata": {},
|
754 |
+
"outputs": [],
|
755 |
+
"source": [
|
756 |
+
"from llama_index.llms import OpenAI\n",
|
757 |
+
"from llama_index.memory import ChatMemoryBuffer\n",
|
758 |
+
"llm = OpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0.0)"
|
759 |
+
]
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"cell_type": "code",
|
763 |
+
"execution_count": null,
|
764 |
+
"id": "497b02bd-3ec7-4a4e-8af9-6417437a4bce",
|
765 |
+
"metadata": {},
|
766 |
+
"outputs": [],
|
767 |
+
"source": [
|
768 |
+
"service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)"
|
769 |
+
]
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"cell_type": "code",
|
773 |
+
"execution_count": null,
|
774 |
+
"id": "51d64b76-628e-418c-b394-807ea9cafd6c",
|
775 |
+
"metadata": {},
|
776 |
+
"outputs": [],
|
777 |
+
"source": []
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"cell_type": "code",
|
781 |
+
"execution_count": null,
|
782 |
+
"id": "c0b28d70-c43d-4542-9e1b-4ce29a60f9d3",
|
783 |
+
"metadata": {},
|
784 |
+
"outputs": [],
|
785 |
+
"source": [
|
786 |
+
"db = chromadb.PersistentClient(path=\"../models/chroma_db\")"
|
787 |
+
]
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"cell_type": "code",
|
791 |
+
"execution_count": null,
|
792 |
+
"id": "6f1d4e93-0d74-456a-9c1d-938405a8ec9a",
|
793 |
+
"metadata": {},
|
794 |
+
"outputs": [],
|
795 |
+
"source": [
|
796 |
+
"chroma_collection = db.get_or_create_collection(\"quickstart\")"
|
797 |
+
]
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"cell_type": "code",
|
801 |
+
"execution_count": null,
|
802 |
+
"id": "da0dd3b7-d798-4c0f-b735-cf1e67094c46",
|
803 |
+
"metadata": {},
|
804 |
+
"outputs": [],
|
805 |
+
"source": [
|
806 |
+
"# assign chroma as the vector_store to the context\n",
|
807 |
+
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
808 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
809 |
+
]
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"cell_type": "code",
|
813 |
+
"execution_count": null,
|
814 |
+
"id": "0d62e372-8a33-4609-9ac4-fee3cbc4e8a9",
|
815 |
+
"metadata": {},
|
816 |
+
"outputs": [],
|
817 |
+
"source": [
|
818 |
+
"# create your index\n",
|
819 |
+
"index = VectorStoreIndex.from_vector_store(\n",
|
820 |
+
" vector_store=vector_store, service_context=service_context, storage_context=storage_context\n",
|
821 |
+
")"
|
822 |
+
]
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"cell_type": "code",
|
826 |
+
"execution_count": null,
|
827 |
+
"id": "26dedd3b-44f3-4a67-865a-693cd6d0a9ea",
|
828 |
+
"metadata": {},
|
829 |
+
"outputs": [],
|
830 |
+
"source": [
|
831 |
+
"system_content = (\"You are a helpful study assistant. \"\n",
|
832 |
+
" \"You do not respond as 'User' or pretend to be 'User'. \"\n",
|
833 |
+
" \"You only respond once as 'Assistant'.\"\n",
|
834 |
+
")\n",
|
835 |
+
"memory = ChatMemoryBuffer.from_defaults(token_limit=15000)\n",
|
836 |
+
"chat_engine = index.as_chat_engine(\n",
|
837 |
+
" chat_mode=\"context\",\n",
|
838 |
+
" memory=memory,\n",
|
839 |
+
" system_prompt=system_content\n",
|
840 |
+
")"
|
841 |
+
]
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"cell_type": "code",
|
845 |
+
"execution_count": null,
|
846 |
+
"id": "9e3da625-283a-4d57-a449-d5aa17d0c188",
|
847 |
+
"metadata": {},
|
848 |
+
"outputs": [],
|
849 |
+
"source": [
|
850 |
+
"response = chat_engine.stream_chat(\"are you there?\")"
|
851 |
+
]
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"cell_type": "code",
|
855 |
+
"execution_count": null,
|
856 |
+
"id": "62ed7a14-261f-4c68-8578-5dfb74bcfc58",
|
857 |
+
"metadata": {},
|
858 |
+
"outputs": [],
|
859 |
+
"source": [
|
860 |
+
"for r in response.response_gen:\n",
|
861 |
+
" print(r, end=\"\")"
|
862 |
+
]
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"cell_type": "code",
|
866 |
+
"execution_count": null,
|
867 |
+
"id": "1d4ba65c-3135-4b96-a342-c5546949cb72",
|
868 |
+
"metadata": {},
|
869 |
+
"outputs": [],
|
870 |
+
"source": []
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"cell_type": "code",
|
874 |
+
"execution_count": null,
|
875 |
+
"id": "9ca2555f-6975-4bc1-b804-c0c9beb2a515",
|
876 |
+
"metadata": {},
|
877 |
+
"outputs": [],
|
878 |
+
"source": []
|
879 |
}
|
880 |
],
|
881 |
"metadata": {
|
notebooks/qna_prompting_with_function_calling.ipynb
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "9e975979-3b3d-4a8d-9db6-b7433cf0d8b4",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os, random, json\n",
|
11 |
+
"import sqlite3\n",
|
12 |
+
"\n",
|
13 |
+
"import pandas as pd\n",
|
14 |
+
"from openai import OpenAI"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"id": "98601634-bd9b-4566-b242-2b3c9d04b260",
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [],
|
23 |
+
"source": []
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "markdown",
|
27 |
+
"id": "63db76a8-31de-4957-b7b9-291c2539f976",
|
28 |
+
"metadata": {},
|
29 |
+
"source": [
|
30 |
+
"### Parameters"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"id": "ff4d40aa-a42e-4ad7-9ca9-d894653d205e",
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"db_path = \"../database/mock_qna.db\""
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": null,
|
46 |
+
"id": "98a20c7e-b1dc-42d5-929b-62978959abda",
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [],
|
49 |
+
"source": []
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": null,
|
54 |
+
"id": "a11295d9-9bf0-4c9d-b5b2-0feec01bf640",
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"con = sqlite3.connect(db_path)"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"id": "a1c1e976-0d75-42e3-8c2e-5045ee0f2c4a",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"cur = con.cursor()"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"id": "d78b0cc7-0238-41be-bc9f-688fcac71f73",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"res = cur.execute(f\"\"\"SELECT COUNT(*)\n",
|
79 |
+
" FROM qna_tbl\n",
|
80 |
+
" \"\"\")\n",
|
81 |
+
"table_size = res.fetchone()[0]\n",
|
82 |
+
"print(f\"table size: {table_size}\")"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": null,
|
88 |
+
"id": "faaacff0-bc67-464d-bd7c-1d51b0901dd4",
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"res = cur.execute(f\"\"\"SELECT chapter, COUNT(*)\n",
|
93 |
+
" FROM qna_tbl\n",
|
94 |
+
" GROUP BY chapter\n",
|
95 |
+
" \"\"\")\n",
|
96 |
+
"chapter_counts = res.fetchall()\n",
|
97 |
+
"print(chapter_counts)"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": null,
|
103 |
+
"id": "f83954ba-f92a-42ce-8d1c-758f4054b4c5",
|
104 |
+
"metadata": {},
|
105 |
+
"outputs": [],
|
106 |
+
"source": []
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": null,
|
111 |
+
"id": "117bbc79-5f58-4b31-9df1-dac75d7ef5a8",
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [],
|
114 |
+
"source": []
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": null,
|
119 |
+
"id": "8dae73ca-845a-4d1e-8e1f-b1efb36dec8e",
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [],
|
122 |
+
"source": []
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": null,
|
127 |
+
"id": "6c4fddf3-6e7a-40c7-a6c2-2e06f976ec56",
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [],
|
130 |
+
"source": [
|
131 |
+
"id = random.randint(1, table_size)\n",
|
132 |
+
"res = cur.execute(f\"\"\"SELECT question, option_1, option_2, option_3, option_4, correct_answer\n",
|
133 |
+
" FROM qna_tbl\n",
|
134 |
+
" WHERE id={id}\n",
|
135 |
+
" \"\"\")\n",
|
136 |
+
"result = res.fetchone()\n",
|
137 |
+
"result"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": null,
|
143 |
+
"id": "f55b4a21-45b1-42a6-8ad1-352174b78806",
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [],
|
146 |
+
"source": []
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"id": "c5ef430b-807c-4090-8ed2-969c43ba228e",
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"def get_qna_question(chapter_n):\n",
|
156 |
+
" sql_string = f\"\"\"SELECT id, question, option_1, option_2, option_3, option_4, correct_answer\n",
|
157 |
+
" FROM qna_tbl\n",
|
158 |
+
" WHERE chapter='{chapter_n}'\n",
|
159 |
+
" \"\"\"\n",
|
160 |
+
" res = cur.execute(sql_string)\n",
|
161 |
+
" result = res.fetchone()\n",
|
162 |
+
"\n",
|
163 |
+
" id = result[0]\n",
|
164 |
+
" question = result[1]\n",
|
165 |
+
" option_1 = result[2]\n",
|
166 |
+
" option_2 = result[3]\n",
|
167 |
+
" option_3 = result[4]\n",
|
168 |
+
" option_4 = result[5]\n",
|
169 |
+
" c_answer = result[6]\n",
|
170 |
+
"\n",
|
171 |
+
" qna_str = \"Question: \\n\" + \\\n",
|
172 |
+
" \"========= \\n\" + \\\n",
|
173 |
+
" question.replace(\"\\\\n\", \"\\n\") + \"\\n\" + \\\n",
|
174 |
+
" \"A) \" + option_1 + \"\\n\" + \\\n",
|
175 |
+
" \"B) \" + option_2 + \"\\n\" + \\\n",
|
176 |
+
" \"C) \" + option_3 + \"\\n\" + \\\n",
|
177 |
+
" \"D) \" + option_4\n",
|
178 |
+
" \n",
|
179 |
+
" return id, qna_str, c_answer"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "code",
|
184 |
+
"execution_count": null,
|
185 |
+
"id": "b61cc8eb-5118-438a-b38f-e01fc92c7387",
|
186 |
+
"metadata": {},
|
187 |
+
"outputs": [],
|
188 |
+
"source": []
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": null,
|
193 |
+
"id": "13702036-6457-464d-bd32-0e20dd7050e5",
|
194 |
+
"metadata": {},
|
195 |
+
"outputs": [],
|
196 |
+
"source": [
|
197 |
+
"qna_custom_functions = [\n",
|
198 |
+
" {\n",
|
199 |
+
" \"name\": \"get_qna_question\",\n",
|
200 |
+
" \"description\": \"\"\"\n",
|
201 |
+
" Extract the chapter information from the body of the input text, the format looks as follow:\n",
|
202 |
+
" The output should be in the format with `Chapter_` as prefix.\n",
|
203 |
+
" Example 1: `Chapter_1` for first chapter\n",
|
204 |
+
" Example 2: For chapter 12 of the textbook, you should return `Chapter_12`\n",
|
205 |
+
" Example 3: `Chapter_5` for fifth chapter\n",
|
206 |
+
" Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.\n",
|
207 |
+
" \"\"\",\n",
|
208 |
+
" \"parameters\": {\n",
|
209 |
+
" \"type\": \"object\",\n",
|
210 |
+
" \"properties\": {\n",
|
211 |
+
" \"chapter_n\": {\n",
|
212 |
+
" \"type\": \"string\",\n",
|
213 |
+
" \"description\": \"\"\"\n",
|
214 |
+
" which chapter to extract, the format of this function argumet is with `Chapter_` as prefix, \n",
|
215 |
+
" concatenated with chapter number in integer. For example, `Chapter_2`, `Chapter_10`.\n",
|
216 |
+
" \"\"\"\n",
|
217 |
+
" }\n",
|
218 |
+
" }\n",
|
219 |
+
" }\n",
|
220 |
+
" }\n",
|
221 |
+
"]"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": null,
|
227 |
+
"id": "1bbb95af-dd82-443f-b23c-97c9a2777e11",
|
228 |
+
"metadata": {},
|
229 |
+
"outputs": [],
|
230 |
+
"source": []
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": null,
|
235 |
+
"id": "957fe647-c1f7-4db5-8f31-fb5e1f546c0c",
|
236 |
+
"metadata": {},
|
237 |
+
"outputs": [],
|
238 |
+
"source": [
|
239 |
+
"client = OpenAI()"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "code",
|
244 |
+
"execution_count": null,
|
245 |
+
"id": "018fc414-d6df-408f-a14c-0a3857f4c52d",
|
246 |
+
"metadata": {},
|
247 |
+
"outputs": [],
|
248 |
+
"source": [
|
249 |
+
"prompt = \"I am interested in chapter 13, can you test my understanding of this chapter?\"\n",
|
250 |
+
"response = client.chat.completions.create(\n",
|
251 |
+
" model = 'gpt-3.5-turbo',\n",
|
252 |
+
" messages = [{'role': 'user', 'content': prompt}],\n",
|
253 |
+
" functions = qna_custom_functions,\n",
|
254 |
+
" function_call = 'auto'\n",
|
255 |
+
")\n",
|
256 |
+
"json_response = json.loads(response.choices[0].message.function_call.arguments)\n",
|
257 |
+
"print(json_response)"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "code",
|
262 |
+
"execution_count": null,
|
263 |
+
"id": "2408c546-335c-478a-b1ea-9c0921a9b7a0",
|
264 |
+
"metadata": {},
|
265 |
+
"outputs": [],
|
266 |
+
"source": [
|
267 |
+
"\n"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": null,
|
273 |
+
"id": "37ec1b9a-2cdd-4838-ab02-8260d392483f",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"prompt = \"I am interested in chapter thirteen, can you test my understanding of this chapter?\"\n",
|
278 |
+
"response = client.chat.completions.create(\n",
|
279 |
+
" model = 'gpt-3.5-turbo',\n",
|
280 |
+
" messages = [{'role': 'user', 'content': prompt}],\n",
|
281 |
+
" functions = qna_custom_functions,\n",
|
282 |
+
" function_call = 'auto'\n",
|
283 |
+
")\n",
|
284 |
+
"json_response = json.loads(response.choices[0].message.function_call.arguments)\n",
|
285 |
+
"print(json_response)"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": null,
|
291 |
+
"id": "6b8e9f05-bb9a-429b-a1fb-abbaced23230",
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [],
|
294 |
+
"source": []
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": null,
|
299 |
+
"id": "18edebdd-2c7f-4589-8909-f816be5c4d1c",
|
300 |
+
"metadata": {},
|
301 |
+
"outputs": [],
|
302 |
+
"source": [
|
303 |
+
"prompt = \"I am interested in 4th chapter, can you test my understanding of this chapter?\"\n",
|
304 |
+
"response = client.chat.completions.create(\n",
|
305 |
+
" model = 'gpt-3.5-turbo',\n",
|
306 |
+
" messages = [{'role': 'user', 'content': prompt}],\n",
|
307 |
+
" functions = qna_custom_functions,\n",
|
308 |
+
" function_call = 'auto'\n",
|
309 |
+
")\n",
|
310 |
+
"json_response = json.loads(response.choices[0].message.function_call.arguments)\n",
|
311 |
+
"print(json_response)"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "code",
|
316 |
+
"execution_count": null,
|
317 |
+
"id": "d4325b3c-47d6-4d3f-a50a-45914b47a9c0",
|
318 |
+
"metadata": {},
|
319 |
+
"outputs": [],
|
320 |
+
"source": []
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"execution_count": null,
|
325 |
+
"id": "c558b722-4438-4485-98c0-b4117bc3d46e",
|
326 |
+
"metadata": {},
|
327 |
+
"outputs": [],
|
328 |
+
"source": [
|
329 |
+
"prompt = \"\"\"There are 15 chapters in the Health Insurance text book, I want to study the last chapter, \n",
|
330 |
+
" can you test my understanding of this chapter?\n",
|
331 |
+
" \"\"\"\n",
|
332 |
+
"response = client.chat.completions.create(\n",
|
333 |
+
" model = 'gpt-3.5-turbo',\n",
|
334 |
+
" messages = [{'role': 'user', 'content': prompt}],\n",
|
335 |
+
" functions = qna_custom_functions,\n",
|
336 |
+
" function_call = 'auto'\n",
|
337 |
+
")\n",
|
338 |
+
"json_response = json.loads(response.choices[0].message.function_call.arguments)\n",
|
339 |
+
"print(json_response)"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": null,
|
345 |
+
"id": "074229dc-82d9-4a2b-9a08-019228da78a1",
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [],
|
348 |
+
"source": []
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"cell_type": "code",
|
352 |
+
"execution_count": null,
|
353 |
+
"id": "289fba25-f547-402a-bd13-0dc4ce7ddf8e",
|
354 |
+
"metadata": {},
|
355 |
+
"outputs": [],
|
356 |
+
"source": [
|
357 |
+
"id, qna_str, answer = get_qna_question(chapter_n=json_response[\"chapter_n\"])\n",
|
358 |
+
"print(qna_str)"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "code",
|
363 |
+
"execution_count": null,
|
364 |
+
"id": "adc9f539-3654-4174-815b-e0939f513a20",
|
365 |
+
"metadata": {},
|
366 |
+
"outputs": [],
|
367 |
+
"source": []
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"cell_type": "code",
|
371 |
+
"execution_count": null,
|
372 |
+
"id": "5b6ad929-e6a5-4978-8678-519375ef62eb",
|
373 |
+
"metadata": {},
|
374 |
+
"outputs": [],
|
375 |
+
"source": []
|
376 |
+
}
|
377 |
+
],
|
378 |
+
"metadata": {
|
379 |
+
"kernelspec": {
|
380 |
+
"display_name": "Python 3 (ipykernel)",
|
381 |
+
"language": "python",
|
382 |
+
"name": "python3"
|
383 |
+
},
|
384 |
+
"language_info": {
|
385 |
+
"codemirror_mode": {
|
386 |
+
"name": "ipython",
|
387 |
+
"version": 3
|
388 |
+
},
|
389 |
+
"file_extension": ".py",
|
390 |
+
"mimetype": "text/x-python",
|
391 |
+
"name": "python",
|
392 |
+
"nbconvert_exporter": "python",
|
393 |
+
"pygments_lexer": "ipython3",
|
394 |
+
"version": "3.9.18"
|
395 |
+
}
|
396 |
+
},
|
397 |
+
"nbformat": 4,
|
398 |
+
"nbformat_minor": 5
|
399 |
+
}
|
notebooks/qna_prompting_with_pydantic.ipynb
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "6f0f5f02-c8e9-43a9-853d-12bb3c19dbe8",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from pydantic import BaseModel"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "94244a1e-e55a-4954-885e-4558797c6fe3",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"from llama_index.llms import OpenAI"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
+
"id": "641f36c7-0aa3-4146-9840-bfb0d4d78b4d",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"from llama_index.core.tools import BaseTool, FunctionTool"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"id": "cb20cd13-20fd-4303-acde-b7abe0b48e39",
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": []
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": null,
|
44 |
+
"id": "ab4d1a52-84be-492f-8275-3da20d854cb6",
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"class Song(BaseModel):\n",
|
49 |
+
" \"\"\"A song with name and artist\"\"\"\n",
|
50 |
+
"\n",
|
51 |
+
" name: str\n",
|
52 |
+
" artist: str"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": null,
|
58 |
+
"id": "a5822b1d-32ef-4b68-8629-a727ff51cd0a",
|
59 |
+
"metadata": {},
|
60 |
+
"outputs": [],
|
61 |
+
"source": []
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"id": "63332a44-9441-4f49-85a2-934e2c55a362",
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"song_fn = FunctionTool.from_defaults(fn=Song)"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"id": "ef0d7d67-9855-47ea-8569-7bfb20b03a07",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"response = OpenAI().complete(\"Generate a song\", tools=[song_fn])\n",
|
81 |
+
"tool_calls = response.additional_kwargs[\"tool_calls\"]"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": null,
|
87 |
+
"id": "bca4c0b2-5165-4943-af1f-d3168ee88fcd",
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": []
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"metadata": {
|
94 |
+
"kernelspec": {
|
95 |
+
"display_name": "Python 3 (ipykernel)",
|
96 |
+
"language": "python",
|
97 |
+
"name": "python3"
|
98 |
+
},
|
99 |
+
"language_info": {
|
100 |
+
"codemirror_mode": {
|
101 |
+
"name": "ipython",
|
102 |
+
"version": 3
|
103 |
+
},
|
104 |
+
"file_extension": ".py",
|
105 |
+
"mimetype": "text/x-python",
|
106 |
+
"name": "python",
|
107 |
+
"nbconvert_exporter": "python",
|
108 |
+
"pygments_lexer": "ipython3",
|
109 |
+
"version": "3.9.18"
|
110 |
+
}
|
111 |
+
},
|
112 |
+
"nbformat": 4,
|
113 |
+
"nbformat_minor": 5
|
114 |
+
}
|
raw_documents/qna.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96f148c23c11fe6df506f5286d2c90143b274ce2705501deaeac47fa63863825
|
3 |
+
size 2134
|
requirements.txt
CHANGED
@@ -16,9 +16,10 @@ attrs==23.2.0
|
|
16 |
Babel==2.14.0
|
17 |
backoff==2.2.1
|
18 |
bcrypt==4.1.2
|
19 |
-
beautifulsoup4==4.12.
|
20 |
bleach==6.1.0
|
21 |
blinker==1.7.0
|
|
|
22 |
build==1.0.3
|
23 |
cachetools==5.3.2
|
24 |
certifi==2023.11.17
|
@@ -37,6 +38,7 @@ decorator==5.1.1
|
|
37 |
defusedxml==0.7.1
|
38 |
Deprecated==1.2.14
|
39 |
dill==0.3.7
|
|
|
40 |
distro==1.9.0
|
41 |
entrypoints==0.4
|
42 |
exceptiongroup==1.2.0
|
|
|
16 |
Babel==2.14.0
|
17 |
backoff==2.2.1
|
18 |
bcrypt==4.1.2
|
19 |
+
beautifulsoup4==4.12.3
|
20 |
bleach==6.1.0
|
21 |
blinker==1.7.0
|
22 |
+
bs4==0.0.2
|
23 |
build==1.0.3
|
24 |
cachetools==5.3.2
|
25 |
certifi==2023.11.17
|
|
|
38 |
defusedxml==0.7.1
|
39 |
Deprecated==1.2.14
|
40 |
dill==0.3.7
|
41 |
+
dirtyjson==1.0.8
|
42 |
distro==1.9.0
|
43 |
entrypoints==0.4
|
44 |
exceptiongroup==1.2.0
|
streamlit_app.py
CHANGED
@@ -7,12 +7,15 @@ import base64
|
|
7 |
from io import BytesIO
|
8 |
import nest_asyncio
|
9 |
|
10 |
-
|
11 |
-
from llama_index import
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
from llama_index.embeddings import HuggingFaceEmbedding
|
|
|
16 |
from llama_index.memory import ChatMemoryBuffer
|
17 |
|
18 |
from vision_api import get_transcribed_text
|
@@ -27,6 +30,8 @@ openai_api = os.getenv("OPENAI_API_KEY")
|
|
27 |
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
|
28 |
"./raw_documents/qna.txt"]
|
29 |
embedding_model = "BAAI/bge-small-en-v1.5"
|
|
|
|
|
30 |
system_content = ("You are a helpful study assistant. "
|
31 |
"You do not respond as 'User' or pretend to be 'User'. "
|
32 |
"You only respond once as 'Assistant'."
|
@@ -104,7 +109,9 @@ def clear_chat_history():
|
|
104 |
llm_model=selected_model,
|
105 |
temperature=temperature,
|
106 |
embedding_model=embedding_model,
|
107 |
-
|
|
|
|
|
108 |
chat_engine.reset()
|
109 |
|
110 |
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
|
@@ -124,23 +131,52 @@ def get_llm_object(selected_model, temperature):
|
|
124 |
return llm
|
125 |
|
126 |
@st.cache_resource
|
127 |
-
def get_embedding_model(model_name):
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
129 |
return embed_model
|
130 |
|
131 |
@st.cache_resource
|
132 |
-
def get_query_engine(input_files, llm_model, temperature,
|
133 |
-
embedding_model,
|
134 |
-
|
135 |
-
|
136 |
llm = get_llm_object(llm_model, temperature)
|
137 |
-
embedded_model = get_embedding_model(
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
memory = ChatMemoryBuffer.from_defaults(token_limit=15000)
|
142 |
-
|
143 |
-
# chat_engine = index.as_query_engine(streaming=True)
|
144 |
chat_engine = index.as_chat_engine(
|
145 |
chat_mode="context",
|
146 |
memory=memory,
|
@@ -154,7 +190,9 @@ def generate_llm_response(prompt_input):
|
|
154 |
llm_model=selected_model,
|
155 |
temperature=temperature,
|
156 |
embedding_model=embedding_model,
|
157 |
-
|
|
|
|
|
158 |
|
159 |
# st.session_state.messages
|
160 |
response = chat_engine.stream_chat(prompt_input)
|
|
|
7 |
from io import BytesIO
|
8 |
import nest_asyncio
|
9 |
|
10 |
+
import chromadb
|
11 |
+
from llama_index import (VectorStoreIndex,
|
12 |
+
SimpleDirectoryReader,
|
13 |
+
ServiceContext,
|
14 |
+
Document)
|
15 |
+
from llama_index.vector_stores import ChromaVectorStore
|
16 |
+
from llama_index.storage.storage_context import StorageContext
|
17 |
from llama_index.embeddings import HuggingFaceEmbedding
|
18 |
+
from llama_index.llms import OpenAI
|
19 |
from llama_index.memory import ChatMemoryBuffer
|
20 |
|
21 |
from vision_api import get_transcribed_text
|
|
|
30 |
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
|
31 |
"./raw_documents/qna.txt"]
|
32 |
embedding_model = "BAAI/bge-small-en-v1.5"
|
33 |
+
persisted_vector_db = "./models/chroma_db"
|
34 |
+
fine_tuned_path = "local:models/fine-tuned-embeddings"
|
35 |
system_content = ("You are a helpful study assistant. "
|
36 |
"You do not respond as 'User' or pretend to be 'User'. "
|
37 |
"You only respond once as 'Assistant'."
|
|
|
109 |
llm_model=selected_model,
|
110 |
temperature=temperature,
|
111 |
embedding_model=embedding_model,
|
112 |
+
fine_tuned_path=fine_tuned_path,
|
113 |
+
system_content=system_content,
|
114 |
+
persisted_path=persisted_vector_db)
|
115 |
chat_engine.reset()
|
116 |
|
117 |
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
|
|
|
131 |
return llm
|
132 |
|
133 |
@st.cache_resource
|
134 |
+
def get_embedding_model(model_name, fine_tuned_path=None):
|
135 |
+
if fine_tuned_path is None:
|
136 |
+
print(f"loading from `{model_name}` from huggingface")
|
137 |
+
embed_model = HuggingFaceEmbedding(model_name=model_name)
|
138 |
+
else:
|
139 |
+
print(f"loading from local `{fine_tuned_path}`")
|
140 |
+
embed_model = fine_tuned_path
|
141 |
return embed_model
|
142 |
|
143 |
@st.cache_resource
|
144 |
+
def get_query_engine(input_files, llm_model, temperature,
|
145 |
+
embedding_model, fine_tuned_path,
|
146 |
+
system_content, persisted_path):
|
147 |
+
|
148 |
llm = get_llm_object(llm_model, temperature)
|
149 |
+
embedded_model = get_embedding_model(
|
150 |
+
model_name=embedding_model,
|
151 |
+
fine_tuned_path=fine_tuned_path
|
152 |
+
)
|
153 |
+
service_context = ServiceContext.from_defaults(
|
154 |
+
llm=llm,
|
155 |
+
embed_model=embedded_model
|
156 |
+
)
|
157 |
+
|
158 |
+
if os.path.exists(persisted_path):
|
159 |
+
print("loading from vector database - chroma")
|
160 |
+
db = chromadb.PersistentClient(path=persisted_path)
|
161 |
+
chroma_collection = db.get_or_create_collection("quickstart")
|
162 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
163 |
+
storage_context = StorageContext.from_defaults(
|
164 |
+
vector_store=vector_store
|
165 |
+
)
|
166 |
+
index = VectorStoreIndex.from_vector_store(
|
167 |
+
vector_store=vector_store,
|
168 |
+
service_context=service_context,
|
169 |
+
storage_context=storage_context
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
print("create in-memory vector store")
|
173 |
+
document = get_document_object(input_files)
|
174 |
+
index = VectorStoreIndex.from_documents(
|
175 |
+
[document],
|
176 |
+
service_context=service_context
|
177 |
+
)
|
178 |
+
|
179 |
memory = ChatMemoryBuffer.from_defaults(token_limit=15000)
|
|
|
|
|
180 |
chat_engine = index.as_chat_engine(
|
181 |
chat_mode="context",
|
182 |
memory=memory,
|
|
|
190 |
llm_model=selected_model,
|
191 |
temperature=temperature,
|
192 |
embedding_model=embedding_model,
|
193 |
+
fine_tuned_path=fine_tuned_path,
|
194 |
+
system_content=system_content,
|
195 |
+
persisted_path=persisted_vector_db)
|
196 |
|
197 |
# st.session_state.messages
|
198 |
response = chat_engine.stream_chat(prompt_input)
|