Spaces:
Running
Running
File size: 16,673 Bytes
03e7460 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import geopandas as gpd\n",
"import rioxarray as rxr\n",
"import xarray as xr\n",
"import numpy as np\n",
"import os\n",
"import torch\n",
"from transformers import SegformerForSemanticSegmentation\n",
"from lib.utils import compute_mask, compute_vndvi, compute_vdi"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# # Read raster data\n",
"# raster_path = \"data/spain_2022-07-29.tif\"\n",
"# raster = rxr.open_rasterio(raster_path)\n",
"\n",
"# # Crop raster with GeoJSON geometry, if available\n",
"# geom_path = raster_path.replace(\".tif\", \".geojson\")\n",
"# if os.path.exists(geom_path):\n",
"# geom = gpd.read_file(geom_path)\n",
"# raster = raster.rio.clip(geom.geometry)\n",
"# raster.rio.to_raster(raster_path.replace(\".tif\", \"_cropped.tif\"))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def load_model(hf_path='links-ads/gaia-growseg'):\n",
" # logger.info(f'Loading GAIA GRowSeg on {device}...')\n",
" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
" model = SegformerForSemanticSegmentation.from_pretrained(\n",
" hf_path,\n",
" num_labels=1,\n",
" num_channels=3,\n",
" id2label={1: 'vine'},\n",
" label2id={'vine': 1},\n",
" token=os.getenv('hf_read_access_token')\n",
" )\n",
" return model.to(device).eval()\n",
"\n",
"# Load GAIA GRowSeg model\n",
"model = load_model()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[32m2025-03-20 12:39:09.921\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mlib.utils\u001b[0m:\u001b[36msliding_window_avg_pooling\u001b[0m:\u001b[36m308\u001b[0m - \u001b[1mExtracting patches idx...\u001b[0m\n",
"100%|βββββββββββββββββββββββββββββββββββββββββββββ| 67848/67848 [00:03<00:00, 20745.29it/s]\n",
"\u001b[32m2025-03-20 12:39:14.795\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mlib.utils\u001b[0m:\u001b[36msliding_window_avg_pooling\u001b[0m:\u001b[36m308\u001b[0m - \u001b[1mExtracting patches idx...\u001b[0m\n",
"100%|βββββββββββββββββββββββββββββββββββββββββββββ| 67848/67848 [00:03<00:00, 19329.36it/s]\n",
"\u001b[32m2025-03-20 12:39:56.011\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mlib.utils\u001b[0m:\u001b[36msliding_window_avg_pooling\u001b[0m:\u001b[36m308\u001b[0m - \u001b[1mExtracting patches idx...\u001b[0m\n",
"100%|ββββββββββββββββββββββββββββββββββββββββββββββ| 64758/64758 [00:20<00:00, 3203.45it/s]\n"
]
}
],
"source": [
"raster_path = \"data/italy_2022-06-13_cropped.tif\"\n",
"patch_size = 512\n",
"stride = 256\n",
"scaling_factor = 1.0\n",
"dilate_rows = False\n",
"window_size = 360\n",
"granularity = int(window_size/8)\n",
"\n",
"# raster_path = \"data/spain_2022-07-29_cropped.tif\"\n",
"# patch_size = 512\n",
"# stride = 256\n",
"# scaling_factor = 1.0\n",
"# dilate_rows = False\n",
"# window_size = 400\n",
"# granularity = int(window_size/8)\n",
"\n",
"# raster_path = \"data/portugal_2023-08-01.tif\"\n",
"# patch_size = 512\n",
"# stride = 256\n",
"# scaling_factor = 1.25\n",
"# dilate_rows = False\n",
"# window_size = 80\n",
"# granularity = int(window_size/8)\n",
"\n",
"raster = rxr.open_rasterio(raster_path)\n",
"\n",
"# Compute mask\n",
"mask_path = raster_path.replace(\".tif\", \"_mask.tif\")\n",
"if not os.path.exists(mask_path):\n",
" mask = compute_mask(\n",
" raster.to_numpy(),\n",
" model,\n",
" patch_size=patch_size,\n",
" stride=stride,\n",
" scaling_factor=scaling_factor,\n",
" rotate=False,\n",
" batch_size=16,\n",
" ) # mask is a HxW uint8 array in with 0=background, 255=vine, 1=nodata\n",
"\n",
" # Convert mask from grayscale to RGBA, with red pixels for vine\n",
" alpha = ((mask != 1)*255).astype(np.uint8)\n",
" mask_colored = np.stack([mask, np.zeros_like(mask), np.zeros_like(mask), alpha], axis=0) # now, mask is a 4xHxW uint8 array in with 0=background, 255=vine\n",
"\n",
" # Georef mask like raster\n",
" mask_raster = xr.DataArray(\n",
" mask_colored,\n",
" dims=('band', 'y', 'x'),\n",
" coords={'x': raster.x, 'y': raster.y, 'band': raster.band}\n",
" )\n",
" mask_raster.rio.write_crs(raster.rio.crs, inplace=True) # Copy CRS\n",
" mask_raster.rio.write_transform(raster.rio.transform(), inplace=True) # Copy affine transform\n",
"\n",
" # Save mask\n",
" mask_raster.rio.to_raster(raster_path.replace(\".tif\", \"_mask.tif\"), compress='lzw')\n",
"else:\n",
" mask = rxr.open_rasterio(mask_path).sel(band=1).squeeze().to_numpy()\n",
"\n",
"# Compute vNDVI\n",
"vndvi_rows_path = raster_path.replace(\".tif\", \"_vndvi_rows.tif\")\n",
"vndvi_interrows_path = raster_path.replace(\".tif\", \"_vndvi_interrows.tif\")\n",
"if not os.path.exists(vndvi_rows_path) or not os.path.exists(vndvi_interrows_path):\n",
" vndvi_rows, vndvi_interrows = compute_vndvi(\n",
" raster.to_numpy(),\n",
" mask,\n",
" dilate_rows=dilate_rows,\n",
" window_size=window_size,\n",
" granularity=granularity,\n",
" ) # vNDVI is RGBA\n",
"\n",
" # Georef vNDVI like raster\n",
" vndvi_rows_raster = xr.DataArray(\n",
" vndvi_rows.transpose(2, 0, 1),\n",
" dims=('band', 'y', 'x'),\n",
" coords={'x': raster.x, 'y': raster.y, 'band': raster.band}\n",
" )\n",
" vndvi_rows_raster.rio.write_crs(raster.rio.crs, inplace=True)\n",
" vndvi_rows_raster.rio.write_transform(raster.rio.transform(), inplace=True)\n",
"\n",
" vndvi_interrows_raster = xr.DataArray(\n",
" vndvi_interrows.transpose(2, 0, 1),\n",
" dims=('band', 'y', 'x'),\n",
" coords={'x': raster.x, 'y': raster.y, 'band': raster.band}\n",
" )\n",
" vndvi_interrows_raster.rio.write_crs(raster.rio.crs, inplace=True)\n",
" vndvi_interrows_raster.rio.write_transform(raster.rio.transform(), inplace=True)\n",
"\n",
" # Save vNDVI\n",
" vndvi_rows_raster.rio.to_raster(raster_path.replace(\".tif\", \"_vndvi_rows.tif\"), compress='lzw')\n",
" vndvi_interrows_raster.rio.to_raster(raster_path.replace(\".tif\", \"_vndvi_interrows.tif\"), compress='lzw')\n",
"\n",
"# Compute VDI\n",
"vdi_path = raster_path.replace(\".tif\", \"_vdi.tif\")\n",
"if not os.path.exists(vdi_path):\n",
" vdi = compute_vdi(\n",
" raster.to_numpy(),\n",
" mask,\n",
" window_size=window_size,\n",
" granularity=granularity,\n",
" ) # VDI is RGBA\n",
"\n",
" # Georef VDI like raster\n",
" vdi_raster = xr.DataArray(\n",
" vdi.transpose(2, 0, 1),\n",
" dims=('band', 'y', 'x'),\n",
" coords={'x': raster.x, 'y': raster.y, 'band': raster.band}\n",
" )\n",
" vdi_raster.rio.write_crs(raster.rio.crs, inplace=True)\n",
" vdi_raster.rio.write_transform(raster.rio.transform(), inplace=True)\n",
"\n",
" # Save results\n",
" vdi_raster.rio.to_raster(raster_path.replace(\".tif\", \"_vdi.tif\"), compress='lzw')\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[32m2025-03-20 12:40:30.816\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m76\u001b[0m - \u001b[1mReprojecting rasters to EPSG:4326 with NODATA value 0...\u001b[0m\n",
"\u001b[32m2025-03-20 12:40:52.371\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m84\u001b[0m - \u001b[1mCreating RGB raster overlay...\u001b[0m\n",
"\u001b[32m2025-03-20 12:40:52.373\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'Orthoimage'...\u001b[0m\n",
"\u001b[32m2025-03-20 12:40:58.801\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m86\u001b[0m - \u001b[1mCreating mask overlay...\u001b[0m\n",
"\u001b[32m2025-03-20 12:40:58.806\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'Mask'...\u001b[0m\n",
"\u001b[32m2025-03-20 12:41:05.006\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m88\u001b[0m - \u001b[1mCreating vNDVI rows overlay...\u001b[0m\n",
"\u001b[32m2025-03-20 12:41:05.008\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'vNDVI Rows'...\u001b[0m\n",
"\u001b[32m2025-03-20 12:41:10.988\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m90\u001b[0m - \u001b[1mCreating vNDVI interrows overlay...\u001b[0m\n",
"\u001b[32m2025-03-20 12:41:10.990\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'vNDVI Interrows'...\u001b[0m\n",
"\u001b[32m2025-03-20 12:41:16.558\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m92\u001b[0m - \u001b[1mCreating VDI overlay...\u001b[0m\n",
"\u001b[32m2025-03-20 12:41:16.560\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'VDI'...\u001b[0m\n"
]
}
],
"source": [
"import folium\n",
"from loguru import logger\n",
"\n",
"def create_map(location=[41.9099533, 12.3711879], zoom_start=5, crs=3857, max_zoom=23):\n",
" \"\"\"Create a folium map with OpenStreetMap tiles and optional Esri.WorldImagery basemap.\"\"\"\n",
" if isinstance(crs, int):\n",
" crs = f\"EPSG{crs}\"\n",
" assert crs in [\"EPSG3857\"], f\"Only EPSG:3857 supported for now. Got {crs}.\"\n",
" \n",
" m = folium.Map(\n",
" location=location,\n",
" zoom_start=zoom_start,\n",
" crs=crs,\n",
" max_zoom=max_zoom,\n",
" tiles=\"OpenStreetMap\", # Esri.WorldImagery\n",
" attributionControl=False,\n",
" prefer_canvas=True,\n",
" )\n",
"\n",
" # Add Esri.WorldImagery as optional basemap (radio button)\n",
" folium.TileLayer(\n",
" tiles=\"Esri.WorldImagery\",\n",
" show=False,\n",
" overlay=False,\n",
" control=True,\n",
" ).add_to(m)\n",
"\n",
" return m\n",
"\n",
"def create_image_overlay(raster_path_or_array, name=\"Raster\", opacity=1.0, to_crs=4326, show=True):\n",
" \"\"\" Create a folium image overlay from a raster filepath or xarray.DataArray. \"\"\"\n",
" if isinstance(raster_path_or_array, str):\n",
" # Open the raster and its metadata\n",
" logger.info(f\"Opening raster: {raster_path_or_array!r}...\")\n",
" r = rxr.open_rasterio(raster_path_or_array)\n",
" else:\n",
" r = raster_path_or_array\n",
" nodata = r.rio.nodata or 0\n",
" if r.rio.crs.to_epsg() != to_crs:\n",
" logger.info(f\"Reprojecting raster to EPSG:{to_crs} with NODATA value {nodata}...\")\n",
" r = r.rio.reproject(to_crs, nodata=nodata) # nodata default: 255\n",
" r = r.transpose(\"y\", \"x\", \"band\")\n",
" bounds = r.rio.bounds() # (left, bottom, right, top)\n",
"\n",
" # Create a folium image overlay\n",
" logger.info(f\"Creating overlay: {name!r}...\")\n",
" overlay = folium.raster_layers.ImageOverlay(\n",
" image=r.to_numpy(),\n",
" name=name,\n",
" bounds=[[bounds[1], bounds[0]], [bounds[3], bounds[2]]], # format for folium: ((bottom,left),(top,right))\n",
" opacity=opacity,\n",
" interactive=True,\n",
" cross_origin=False,\n",
" zindex=1,\n",
" show=show,\n",
" )\n",
"\n",
" return overlay\n",
"\n",
"# Define paths\n",
"raster_path = \"data/portugal_2023-08-01.tif\"\n",
"mask_path = raster_path.replace('.tif', '_mask.tif')\n",
"vndvi_rows_path = raster_path.replace('.tif', '_vndvi_rows.tif')\n",
"vndvi_interrows_path = raster_path.replace('.tif', '_vndvi_interrows.tif')\n",
"vdi_path = raster_path.replace('.tif', '_vdi.tif')\n",
"\n",
"# Load rasters\n",
"raster = rxr.open_rasterio(raster_path)\n",
"mask_raster = rxr.open_rasterio(mask_path)\n",
"vndvi_rows_raster = rxr.open_rasterio(vndvi_rows_path)\n",
"vndvi_interrows_raster = rxr.open_rasterio(vndvi_interrows_path)\n",
"vdi_raster = rxr.open_rasterio(vdi_path)\n",
"\n",
"# Reproject all rasters to EPSG:4326\n",
"if raster.rio.crs.to_epsg() != 4326:\n",
" logger.info(f\"Reprojecting rasters to EPSG:4326 with NODATA value 0...\")\n",
" raster = raster.rio.reproject(\"EPSG:4326\", nodata=0) # nodata default: 255\n",
" mask_raster = mask_raster.rio.reproject(\"EPSG:4326\", nodata=0)\n",
" vndvi_rows_raster = vndvi_rows_raster.rio.reproject(\"EPSG:4326\", nodata=0)\n",
" vndvi_interrows_raster = vndvi_interrows_raster.rio.reproject(\"EPSG:4326\", nodata=0)\n",
" vdi_raster = vdi_raster.rio.reproject(\"EPSG:4326\", nodata=0)\n",
"\n",
"# Create overlays\n",
"logger.info(f'Creating RGB raster overlay...')\n",
"raster_overlay = create_image_overlay(raster, name=\"Orthoimage\", opacity=1.0, show=True)\n",
"logger.info(f'Creating mask overlay...')\n",
"mask_overlay = create_image_overlay(mask_raster, name=\"Mask\", opacity=1.0, show=False)\n",
"logger.info(f'Creating vNDVI rows overlay...')\n",
"vndvi_rows_overlay = create_image_overlay(vndvi_rows_raster, name=\"vNDVI Rows\", opacity=1.0, show=False)\n",
"logger.info(f'Creating vNDVI interrows overlay...')\n",
"vndvi_interrows_overlay = create_image_overlay(vndvi_interrows_raster, name=\"vNDVI Interrows\", opacity=1.0, show=False)\n",
"logger.info(f'Creating VDI overlay...')\n",
"vdi_overlay = create_image_overlay(vdi_raster, name=\"VDI\", opacity=1.0, show=False)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"m = create_map()\n",
"raster_overlay.add_to(m)\n",
"mask_overlay.add_to(m)\n",
"vndvi_rows_overlay.add_to(m)\n",
"vndvi_interrows_overlay.add_to(m)\n",
"vdi_overlay.add_to(m)\n",
"\n",
"# Add layer control\n",
"folium.LayerControl().add_to(m)\n",
"\n",
"# Fit map to bounds\n",
"m.fit_bounds(raster_overlay.get_bounds())\n",
"\n",
"# Save map\n",
"map_path = raster_path.replace('.tif', '.html')\n",
"m.save(map_path)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|