File size: 16,673 Bytes
03e7460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import geopandas as gpd\n",
    "import rioxarray as rxr\n",
    "import xarray as xr\n",
    "import numpy as np\n",
    "import os\n",
    "import torch\n",
    "from transformers import SegformerForSemanticSegmentation\n",
    "from lib.utils import compute_mask, compute_vndvi, compute_vdi"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# # Read raster data\n",
    "# raster_path = \"data/spain_2022-07-29.tif\"\n",
    "# raster = rxr.open_rasterio(raster_path)\n",
    "\n",
    "# # Crop raster with GeoJSON geometry, if available\n",
    "# geom_path = raster_path.replace(\".tif\", \".geojson\")\n",
    "# if os.path.exists(geom_path):\n",
    "#     geom = gpd.read_file(geom_path)\n",
    "#     raster = raster.rio.clip(geom.geometry)\n",
    "#     raster.rio.to_raster(raster_path.replace(\".tif\", \"_cropped.tif\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def load_model(hf_path='links-ads/gaia-growseg'):\n",
    "    # logger.info(f'Loading GAIA GRowSeg on {device}...')\n",
    "    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
    "    model = SegformerForSemanticSegmentation.from_pretrained(\n",
    "        hf_path,\n",
    "        num_labels=1,\n",
    "        num_channels=3,\n",
    "        id2label={1: 'vine'},\n",
    "        label2id={'vine': 1},\n",
    "        token=os.getenv('hf_read_access_token')\n",
    "    )\n",
    "    return model.to(device).eval()\n",
    "\n",
    "# Load GAIA GRowSeg model\n",
    "model = load_model()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-03-20 12:39:09.921\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36mlib.utils\u001b[0m:\u001b[36msliding_window_avg_pooling\u001b[0m:\u001b[36m308\u001b[0m - \u001b[1mExtracting patches idx...\u001b[0m\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 67848/67848 [00:03<00:00, 20745.29it/s]\n",
      "\u001b[32m2025-03-20 12:39:14.795\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36mlib.utils\u001b[0m:\u001b[36msliding_window_avg_pooling\u001b[0m:\u001b[36m308\u001b[0m - \u001b[1mExtracting patches idx...\u001b[0m\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 67848/67848 [00:03<00:00, 19329.36it/s]\n",
      "\u001b[32m2025-03-20 12:39:56.011\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36mlib.utils\u001b[0m:\u001b[36msliding_window_avg_pooling\u001b[0m:\u001b[36m308\u001b[0m - \u001b[1mExtracting patches idx...\u001b[0m\n",
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 64758/64758 [00:20<00:00, 3203.45it/s]\n"
     ]
    }
   ],
   "source": [
    "raster_path = \"data/italy_2022-06-13_cropped.tif\"\n",
    "patch_size = 512\n",
    "stride = 256\n",
    "scaling_factor = 1.0\n",
    "dilate_rows = False\n",
    "window_size = 360\n",
    "granularity = int(window_size/8)\n",
    "\n",
    "# raster_path = \"data/spain_2022-07-29_cropped.tif\"\n",
    "# patch_size = 512\n",
    "# stride = 256\n",
    "# scaling_factor = 1.0\n",
    "# dilate_rows = False\n",
    "# window_size = 400\n",
    "# granularity = int(window_size/8)\n",
    "\n",
    "# raster_path = \"data/portugal_2023-08-01.tif\"\n",
    "# patch_size = 512\n",
    "# stride = 256\n",
    "# scaling_factor = 1.25\n",
    "# dilate_rows = False\n",
    "# window_size = 80\n",
    "# granularity = int(window_size/8)\n",
    "\n",
    "raster = rxr.open_rasterio(raster_path)\n",
    "\n",
    "# Compute mask\n",
    "mask_path = raster_path.replace(\".tif\", \"_mask.tif\")\n",
    "if not os.path.exists(mask_path):\n",
    "    mask = compute_mask(\n",
    "        raster.to_numpy(),\n",
    "        model,\n",
    "        patch_size=patch_size,\n",
    "        stride=stride,\n",
    "        scaling_factor=scaling_factor,\n",
    "        rotate=False,\n",
    "        batch_size=16,\n",
    "    )   # mask is a HxW uint8 array in with 0=background, 255=vine, 1=nodata\n",
    "\n",
    "    # Convert mask from grayscale to RGBA, with red pixels for vine\n",
    "    alpha = ((mask != 1)*255).astype(np.uint8)\n",
    "    mask_colored = np.stack([mask, np.zeros_like(mask), np.zeros_like(mask), alpha], axis=0)  # now, mask is a 4xHxW uint8 array in with 0=background, 255=vine\n",
    "\n",
    "    # Georef mask like raster\n",
    "    mask_raster = xr.DataArray(\n",
    "        mask_colored,\n",
    "        dims=('band', 'y', 'x'),\n",
    "        coords={'x': raster.x, 'y': raster.y, 'band': raster.band}\n",
    "        )\n",
    "    mask_raster.rio.write_crs(raster.rio.crs, inplace=True)  # Copy CRS\n",
    "    mask_raster.rio.write_transform(raster.rio.transform(), inplace=True)  # Copy affine transform\n",
    "\n",
    "    # Save mask\n",
    "    mask_raster.rio.to_raster(raster_path.replace(\".tif\", \"_mask.tif\"), compress='lzw')\n",
    "else:\n",
    "    mask = rxr.open_rasterio(mask_path).sel(band=1).squeeze().to_numpy()\n",
    "\n",
    "# Compute vNDVI\n",
    "vndvi_rows_path = raster_path.replace(\".tif\", \"_vndvi_rows.tif\")\n",
    "vndvi_interrows_path = raster_path.replace(\".tif\", \"_vndvi_interrows.tif\")\n",
    "if not os.path.exists(vndvi_rows_path) or not os.path.exists(vndvi_interrows_path):\n",
    "    vndvi_rows, vndvi_interrows = compute_vndvi(\n",
    "        raster.to_numpy(),\n",
    "        mask,\n",
    "        dilate_rows=dilate_rows,\n",
    "        window_size=window_size,\n",
    "        granularity=granularity,\n",
    "        )    # vNDVI is RGBA\n",
    "\n",
    "    # Georef vNDVI like raster\n",
    "    vndvi_rows_raster = xr.DataArray(\n",
    "        vndvi_rows.transpose(2, 0, 1),\n",
    "        dims=('band', 'y', 'x'),\n",
    "        coords={'x': raster.x, 'y': raster.y, 'band': raster.band}\n",
    "        )\n",
    "    vndvi_rows_raster.rio.write_crs(raster.rio.crs, inplace=True)\n",
    "    vndvi_rows_raster.rio.write_transform(raster.rio.transform(), inplace=True)\n",
    "\n",
    "    vndvi_interrows_raster = xr.DataArray(\n",
    "        vndvi_interrows.transpose(2, 0, 1),\n",
    "        dims=('band', 'y', 'x'),\n",
    "        coords={'x': raster.x, 'y': raster.y, 'band': raster.band}\n",
    "        )\n",
    "    vndvi_interrows_raster.rio.write_crs(raster.rio.crs, inplace=True)\n",
    "    vndvi_interrows_raster.rio.write_transform(raster.rio.transform(), inplace=True)\n",
    "\n",
    "    # Save vNDVI\n",
    "    vndvi_rows_raster.rio.to_raster(raster_path.replace(\".tif\", \"_vndvi_rows.tif\"), compress='lzw')\n",
    "    vndvi_interrows_raster.rio.to_raster(raster_path.replace(\".tif\", \"_vndvi_interrows.tif\"), compress='lzw')\n",
    "\n",
    "# Compute VDI\n",
    "vdi_path = raster_path.replace(\".tif\", \"_vdi.tif\")\n",
    "if not os.path.exists(vdi_path):\n",
    "    vdi = compute_vdi(\n",
    "        raster.to_numpy(),\n",
    "        mask,\n",
    "        window_size=window_size,\n",
    "        granularity=granularity,\n",
    "        )    # VDI is RGBA\n",
    "\n",
    "    # Georef VDI like raster\n",
    "    vdi_raster = xr.DataArray(\n",
    "        vdi.transpose(2, 0, 1),\n",
    "        dims=('band', 'y', 'x'),\n",
    "        coords={'x': raster.x, 'y': raster.y, 'band': raster.band}\n",
    "        )\n",
    "    vdi_raster.rio.write_crs(raster.rio.crs, inplace=True)\n",
    "    vdi_raster.rio.write_transform(raster.rio.transform(), inplace=True)\n",
    "\n",
    "    # Save results\n",
    "    vdi_raster.rio.to_raster(raster_path.replace(\".tif\", \"_vdi.tif\"), compress='lzw')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-03-20 12:40:30.816\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m76\u001b[0m - \u001b[1mReprojecting rasters to EPSG:4326 with NODATA value 0...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:40:52.371\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m84\u001b[0m - \u001b[1mCreating RGB raster overlay...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:40:52.373\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'Orthoimage'...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:40:58.801\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m86\u001b[0m - \u001b[1mCreating mask overlay...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:40:58.806\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'Mask'...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:41:05.006\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m88\u001b[0m - \u001b[1mCreating vNDVI rows overlay...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:41:05.008\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'vNDVI Rows'...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:41:10.988\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m90\u001b[0m - \u001b[1mCreating vNDVI interrows overlay...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:41:10.990\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'vNDVI Interrows'...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:41:16.558\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36m<module>\u001b[0m:\u001b[36m92\u001b[0m - \u001b[1mCreating VDI overlay...\u001b[0m\n",
      "\u001b[32m2025-03-20 12:41:16.560\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36m__main__\u001b[0m:\u001b[36mcreate_image_overlay\u001b[0m:\u001b[36m46\u001b[0m - \u001b[1mCreating overlay: 'VDI'...\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "import folium\n",
    "from loguru import logger\n",
    "\n",
    "def create_map(location=[41.9099533, 12.3711879], zoom_start=5, crs=3857, max_zoom=23):\n",
    "    \"\"\"Create a folium map with OpenStreetMap tiles and optional Esri.WorldImagery basemap.\"\"\"\n",
    "    if isinstance(crs, int):\n",
    "        crs = f\"EPSG{crs}\"\n",
    "    assert crs in [\"EPSG3857\"], f\"Only EPSG:3857 supported for now. Got {crs}.\"\n",
    "    \n",
    "    m = folium.Map(\n",
    "        location=location,\n",
    "        zoom_start=zoom_start,\n",
    "        crs=crs,\n",
    "        max_zoom=max_zoom,\n",
    "        tiles=\"OpenStreetMap\",  # Esri.WorldImagery\n",
    "        attributionControl=False,\n",
    "        prefer_canvas=True,\n",
    "    )\n",
    "\n",
    "    # Add Esri.WorldImagery as optional basemap (radio button)\n",
    "    folium.TileLayer(\n",
    "        tiles=\"Esri.WorldImagery\",\n",
    "        show=False,\n",
    "        overlay=False,\n",
    "        control=True,\n",
    "    ).add_to(m)\n",
    "\n",
    "    return m\n",
    "\n",
    "def create_image_overlay(raster_path_or_array, name=\"Raster\", opacity=1.0, to_crs=4326, show=True):\n",
    "    \"\"\" Create a folium image overlay from a raster filepath or xarray.DataArray. \"\"\"\n",
    "    if isinstance(raster_path_or_array, str):\n",
    "        # Open the raster and its metadata\n",
    "        logger.info(f\"Opening raster: {raster_path_or_array!r}...\")\n",
    "        r = rxr.open_rasterio(raster_path_or_array)\n",
    "    else:\n",
    "        r = raster_path_or_array\n",
    "    nodata = r.rio.nodata or 0\n",
    "    if r.rio.crs.to_epsg() != to_crs:\n",
    "        logger.info(f\"Reprojecting raster to EPSG:{to_crs} with NODATA value {nodata}...\")\n",
    "        r = r.rio.reproject(to_crs, nodata=nodata) # nodata default: 255\n",
    "    r = r.transpose(\"y\", \"x\", \"band\")\n",
    "    bounds = r.rio.bounds()   # (left, bottom, right, top)\n",
    "\n",
    "    # Create a folium image overlay\n",
    "    logger.info(f\"Creating overlay: {name!r}...\")\n",
    "    overlay = folium.raster_layers.ImageOverlay(\n",
    "        image=r.to_numpy(),\n",
    "        name=name,\n",
    "        bounds=[[bounds[1], bounds[0]], [bounds[3], bounds[2]]],    # format for folium: ((bottom,left),(top,right))\n",
    "        opacity=opacity,\n",
    "        interactive=True,\n",
    "        cross_origin=False,\n",
    "        zindex=1,\n",
    "        show=show,\n",
    "    )\n",
    "\n",
    "    return overlay\n",
    "\n",
    "# Define paths\n",
    "raster_path = \"data/portugal_2023-08-01.tif\"\n",
    "mask_path = raster_path.replace('.tif', '_mask.tif')\n",
    "vndvi_rows_path = raster_path.replace('.tif', '_vndvi_rows.tif')\n",
    "vndvi_interrows_path = raster_path.replace('.tif', '_vndvi_interrows.tif')\n",
    "vdi_path = raster_path.replace('.tif', '_vdi.tif')\n",
    "\n",
    "# Load rasters\n",
    "raster = rxr.open_rasterio(raster_path)\n",
    "mask_raster = rxr.open_rasterio(mask_path)\n",
    "vndvi_rows_raster = rxr.open_rasterio(vndvi_rows_path)\n",
    "vndvi_interrows_raster = rxr.open_rasterio(vndvi_interrows_path)\n",
    "vdi_raster = rxr.open_rasterio(vdi_path)\n",
    "\n",
    "# Reproject all rasters to EPSG:4326\n",
    "if raster.rio.crs.to_epsg() != 4326:\n",
    "    logger.info(f\"Reprojecting rasters to EPSG:4326 with NODATA value 0...\")\n",
    "    raster = raster.rio.reproject(\"EPSG:4326\", nodata=0)    # nodata default: 255\n",
    "    mask_raster = mask_raster.rio.reproject(\"EPSG:4326\", nodata=0)\n",
    "    vndvi_rows_raster = vndvi_rows_raster.rio.reproject(\"EPSG:4326\", nodata=0)\n",
    "    vndvi_interrows_raster = vndvi_interrows_raster.rio.reproject(\"EPSG:4326\", nodata=0)\n",
    "    vdi_raster = vdi_raster.rio.reproject(\"EPSG:4326\", nodata=0)\n",
    "\n",
    "# Create overlays\n",
    "logger.info(f'Creating RGB raster overlay...')\n",
    "raster_overlay = create_image_overlay(raster, name=\"Orthoimage\", opacity=1.0, show=True)\n",
    "logger.info(f'Creating mask overlay...')\n",
    "mask_overlay = create_image_overlay(mask_raster, name=\"Mask\", opacity=1.0, show=False)\n",
    "logger.info(f'Creating vNDVI rows overlay...')\n",
    "vndvi_rows_overlay = create_image_overlay(vndvi_rows_raster, name=\"vNDVI Rows\", opacity=1.0, show=False)\n",
    "logger.info(f'Creating vNDVI interrows overlay...')\n",
    "vndvi_interrows_overlay = create_image_overlay(vndvi_interrows_raster, name=\"vNDVI Interrows\", opacity=1.0, show=False)\n",
    "logger.info(f'Creating VDI overlay...')\n",
    "vdi_overlay = create_image_overlay(vdi_raster, name=\"VDI\", opacity=1.0, show=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "m = create_map()\n",
    "raster_overlay.add_to(m)\n",
    "mask_overlay.add_to(m)\n",
    "vndvi_rows_overlay.add_to(m)\n",
    "vndvi_interrows_overlay.add_to(m)\n",
    "vdi_overlay.add_to(m)\n",
    "\n",
    "# Add layer control\n",
    "folium.LayerControl().add_to(m)\n",
    "\n",
    "# Fit map to bounds\n",
    "m.fit_bounds(raster_overlay.get_bounds())\n",
    "\n",
    "# Save map\n",
    "map_path = raster_path.replace('.tif', '.html')\n",
    "m.save(map_path)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}