Spaces:
Sleeping
Sleeping
jonathanjordan21
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
# from langchain_community.llms import HuggingFaceTextGenInference
|
3 |
+
import os, pickle
|
4 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
5 |
+
from langchain.schema import StrOutputParser
|
6 |
+
|
7 |
+
from custom_llm import CustomLLM, custom_chain_with_history, custom_combined_chain, custom_dataframe_chain, format_df,custom_unique_df_chain
|
8 |
+
|
9 |
+
|
10 |
+
API_TOKEN = os.getenv('HF_INFER_API')
|
11 |
+
|
12 |
+
|
13 |
+
from typing import Optional
|
14 |
+
|
15 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
16 |
+
from langchain_community.chat_models import ChatAnthropic
|
17 |
+
from langchain_core.chat_history import BaseChatMessageHistory
|
18 |
+
from langchain.memory import ConversationBufferMemory
|
19 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
20 |
+
|
21 |
+
|
22 |
+
@st.cache_data
|
23 |
+
def get_df():
|
24 |
+
return pickle.load("ebesha_ticket_df.pkl")
|
25 |
+
|
26 |
+
@st.cache_data
|
27 |
+
def get_unique_values():
|
28 |
+
exec(custom_unique_df_chain(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), df=st.session_state.df).invoke({"df_example":format_df(st.session_state.df.head(4))}))
|
29 |
+
return response
|
30 |
+
|
31 |
+
|
32 |
+
@st.cache_resource
|
33 |
+
def get_llm_chain():
|
34 |
+
dataframe_chain = custom_dataframe_chain(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), df=st.session_state.df, unique_values=st.session_state.unique_values)
|
35 |
+
memory_chain = custom_chain_with_history(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), memory=st.session_state.memory)
|
36 |
+
return custom_unique_df_chain(llm=llm, dataframe_chain=dataframe_chain, memory_chain=memory_chain)
|
37 |
+
|
38 |
+
if 'memory' not in st.session_state:
|
39 |
+
st.session_state['memory'] = ConversationBufferMemory(return_messages=True)
|
40 |
+
st.session_state.memory.chat_memory.add_ai_message("Hello there! I'm AI assistant of Lintas Media Danawa. How can I help you today?")
|
41 |
+
|
42 |
+
if 'df' not in st.session_state:
|
43 |
+
st.session_state['df'] = get_df()
|
44 |
+
|
45 |
+
|
46 |
+
if 'unique_values' not in st.session_state:
|
47 |
+
|
48 |
+
st.session_state.unique_values = get_unique_values()
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
if 'chain' not in st.session_state:
|
53 |
+
# st.session_state['chain'] = custom_chain_with_history(llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"]), memory=st.session_state.memory)
|
54 |
+
st.session_state['chain'] = get_llm_chain()
|
55 |
+
# st.session_state['chain'] = custom_chain_with_history(llm=InferenceClient("https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1", headers = {"Authorization": f"Bearer {API_TOKEN}"}, stream=True, max_new_tokens=512, temperature=0.01), memory=st.session_state.memory)
|
56 |
+
st.title("LMD Chatbot V3)
|
57 |
+
st.subheader("Combination of Ticket Submission and WI/User Guide Knowledge")
|
58 |
+
|
59 |
+
# Initialize chat history
|
60 |
+
if "messages" not in st.session_state:
|
61 |
+
st.session_state.messages = [{"role":"assistant", "content":"Hello there! I'm AI assistant of Lintas Media Danawa. How can I help you today?"}]
|
62 |
+
|
63 |
+
# Display chat messages from history on app rerun
|
64 |
+
for message in st.session_state.messages:
|
65 |
+
with st.chat_message(message["role"]):
|
66 |
+
st.markdown(message["content"])
|
67 |
+
|
68 |
+
|
69 |
+
# React to user input
|
70 |
+
if prompt := st.chat_input("Ask me anything.."):
|
71 |
+
# Display user message in chat message container
|
72 |
+
st.chat_message("User").markdown(prompt)
|
73 |
+
# Add user message to chat history
|
74 |
+
st.session_state.messages.append({"role": "User", "content": prompt})
|
75 |
+
|
76 |
+
# full_response = st.session_state.chain.invoke(prompt).split("\n<|")[0]
|
77 |
+
full_response = st.session_state.chain.invoke({"question":prompt, "memory":st.session_state.memory, "df_example":format_df(st.session_state.df.head(4))}).split("\n<|")[0]
|
78 |
+
|
79 |
+
|
80 |
+
with st.chat_message("assistant"):
|
81 |
+
st.markdown(full_response)
|
82 |
+
|
83 |
+
# Display assistant response in chat message container
|
84 |
+
# with st.chat_message("assistant"):
|
85 |
+
# message_placeholder = st.empty()
|
86 |
+
# full_response = ""
|
87 |
+
# for chunk in st.session_state.chain.stream(prompt):
|
88 |
+
# full_response += chunk + " "
|
89 |
+
# message_placeholder.markdown(full_response + " ")
|
90 |
+
# if full_response[-4:] == "\n<|":
|
91 |
+
# break
|
92 |
+
# st.markdown(full_response)
|
93 |
+
st.session_state.memory.save_context({"question":prompt}, {"output":full_response})
|
94 |
+
st.session_state.memory.chat_memory.messages = st.session_state.memory.chat_memory.messages[-15:]
|
95 |
+
# Add assistant response to chat history
|
96 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|