File size: 1,359 Bytes
d485dcb 174f89c d485dcb 174f89c d485dcb 174f89c d485dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import argparse
import json
from pathlib import Path
import gradio as gr
import torch
from models import AudioClassifier
from utils import logger
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Device: {device}")
ckpt_dir = Path("ckpt/")
config_path = ckpt_dir / "config.json"
assert config_path.exists(), f"config.json not found in {ckpt_dir}"
config = json.loads((ckpt_dir / "config.json").read_text())
model = AudioClassifier(device=device, **config["model"]).to(device)
# Latest checkpoint
if (ckpt_dir / "model_final.pth").exists():
ckpt = ckpt_dir / "model_final.pth"
else:
ckpt = sorted(ckpt_dir.glob("*.pth"))[-1]
logger.info(f"Loading {ckpt}...")
model.load_state_dict(torch.load(ckpt, map_location=device))
def classify_audio(audio_file: str):
logger.info(f"Classifying {audio_file}...")
output = model.infer_from_file(audio_file)
logger.success(f"Predicted: {output}")
return output
desc = """
# NSFW音声分類器
出力は以下の3つのクラスの確率です。
- usual: 通常の音声
- aegi: 喘ぎ声
- chupa: チュパ音(フェラやキス音声)
"""
with gr.Interface(
fn=classify_audio,
inputs=gr.Audio(label="Input audio", type="filepath"),
outputs=gr.Text(label="Classification"),
description=desc,
allow_flagging="never",
) as iface:
iface.launch()
|