File size: 5,477 Bytes
d485dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn


class AsymmetricLoss(nn.Module):
    def __init__(
        self,
        gamma_neg=4,
        gamma_pos=1,
        clip=0.05,
        eps=1e-8,
        disable_torch_grad_focal_loss=True,
    ):
        super(AsymmetricLoss, self).__init__()

        self.gamma_neg = gamma_neg
        self.gamma_pos = gamma_pos
        self.clip = clip
        self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
        self.eps = eps

    def forward(self, x, y):
        """ "
        Parameters
        ----------
        x: input logits
        y: targets (multi-label binarized vector)
        """

        # Calculating Probabilities
        x_sigmoid = torch.sigmoid(x)
        xs_pos = x_sigmoid
        xs_neg = 1 - x_sigmoid

        # Asymmetric Clipping
        if self.clip is not None and self.clip > 0:
            xs_neg = (xs_neg + self.clip).clamp(max=1)

        # Basic CE calculation
        los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
        los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
        loss = los_pos + los_neg

        # Asymmetric Focusing
        if self.gamma_neg > 0 or self.gamma_pos > 0:
            if self.disable_torch_grad_focal_loss:
                torch.set_grad_enabled(False)
            pt0 = xs_pos * y
            pt1 = xs_neg * (1 - y)  # pt = p if t > 0 else 1-p
            pt = pt0 + pt1
            one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
            one_sided_w = torch.pow(1 - pt, one_sided_gamma)
            if self.disable_torch_grad_focal_loss:
                torch.set_grad_enabled(True)
            loss *= one_sided_w

        return -loss.sum()


class AsymmetricLossOptimized(nn.Module):
    """Notice - optimized version, minimizes memory allocation and gpu uploading,
    favors inplace operations"""

    def __init__(
        self,
        gamma_neg=4,
        gamma_pos=1,
        clip=0.05,
        eps=1e-8,
        disable_torch_grad_focal_loss=False,
    ):
        super(AsymmetricLossOptimized, self).__init__()

        self.gamma_neg = gamma_neg
        self.gamma_pos = gamma_pos
        self.clip = clip
        self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
        self.eps = eps

        # prevent memory allocation and gpu uploading every iteration, and encourages inplace operations
        self.targets = self.anti_targets = self.xs_pos = self.xs_neg = (
            self.asymmetric_w
        ) = self.loss = None

    def forward(self, x, y):
        """ "
        Parameters
        ----------
        x: input logits
        y: targets (multi-label binarized vector)
        """

        self.targets = y
        self.anti_targets = 1 - y

        # Calculating Probabilities
        self.xs_pos = torch.sigmoid(x)
        self.xs_neg = 1.0 - self.xs_pos

        # Asymmetric Clipping
        if self.clip is not None and self.clip > 0:
            self.xs_neg.add_(self.clip).clamp_(max=1)

        # Basic CE calculation
        self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps))
        self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min=self.eps)))

        # Asymmetric Focusing
        if self.gamma_neg > 0 or self.gamma_pos > 0:
            if self.disable_torch_grad_focal_loss:
                torch.set_grad_enabled(False)
            self.xs_pos = self.xs_pos * self.targets
            self.xs_neg = self.xs_neg * self.anti_targets
            self.asymmetric_w = torch.pow(
                1 - self.xs_pos - self.xs_neg,
                self.gamma_pos * self.targets + self.gamma_neg * self.anti_targets,
            )
            if self.disable_torch_grad_focal_loss:
                torch.set_grad_enabled(True)
            self.loss *= self.asymmetric_w

        return -self.loss.sum()


class ASLSingleLabel(nn.Module):
    """
    This loss is intended for single-label classification problems
    """

    def __init__(self, gamma_pos=0, gamma_neg=4, eps: float = 0.1, reduction="mean"):
        super(ASLSingleLabel, self).__init__()

        self.eps = eps
        self.logsoftmax = nn.LogSoftmax(dim=-1)
        self.targets_classes = []
        self.gamma_pos = gamma_pos
        self.gamma_neg = gamma_neg
        self.reduction = reduction

    def forward(self, inputs, target):
        """
        "input" dimensions: - (batch_size,number_classes)
        "target" dimensions: - (batch_size)
        """
        num_classes = inputs.size()[-1]
        log_preds = self.logsoftmax(inputs)
        self.targets_classes = torch.zeros_like(inputs).scatter_(
            1, target.long().unsqueeze(1), 1
        )

        # ASL weights
        targets = self.targets_classes
        anti_targets = 1 - targets
        xs_pos = torch.exp(log_preds)
        xs_neg = 1 - xs_pos
        xs_pos = xs_pos * targets
        xs_neg = xs_neg * anti_targets
        asymmetric_w = torch.pow(
            1 - xs_pos - xs_neg,
            self.gamma_pos * targets + self.gamma_neg * anti_targets,
        )
        log_preds = log_preds * asymmetric_w

        if self.eps > 0:  # label smoothing
            self.targets_classes = self.targets_classes.mul(1 - self.eps).add(
                self.eps / num_classes
            )

        # loss calculation
        loss = -self.targets_classes.mul(log_preds)

        loss = loss.sum(dim=-1)
        if self.reduction == "mean":
            loss = loss.mean()

        return loss