clear cache
Browse files- .gitattributes +3 -0
- InstantID/__pycache__/CrossAttentionPatch.cpython-310.pyc +0 -0
- InstantID/__pycache__/resampler.cpython-310.pyc +0 -0
- InstantID/__pycache__/utils.cpython-310.pyc +0 -0
- InstantID/comfy/__pycache__/utils.cpython-310.pyc +0 -0
- InstantID/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
- InstantID/comfy/model_management.py +0 -1158
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
|
37 |
+
# ignore all pyc files
|
38 |
+
*.pyc filter=lfs diff=lfs merge=lfs -text
|
InstantID/__pycache__/CrossAttentionPatch.cpython-310.pyc
DELETED
Binary file (4.86 kB)
|
|
InstantID/__pycache__/resampler.cpython-310.pyc
DELETED
Binary file (3.16 kB)
|
|
InstantID/__pycache__/utils.cpython-310.pyc
DELETED
Binary file (940 Bytes)
|
|
InstantID/comfy/__pycache__/utils.cpython-310.pyc
DELETED
Binary file (879 Bytes)
|
|
InstantID/comfy/ldm/modules/__pycache__/attention.cpython-310.pyc
DELETED
Binary file (1.93 kB)
|
|
InstantID/comfy/model_management.py
DELETED
@@ -1,1158 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
This file is part of ComfyUI.
|
3 |
-
Copyright (C) 2024 Comfy
|
4 |
-
|
5 |
-
This program is free software: you can redistribute it and/or modify
|
6 |
-
it under the terms of the GNU General Public License as published by
|
7 |
-
the Free Software Foundation, either version 3 of the License, or
|
8 |
-
(at your option) any later version.
|
9 |
-
|
10 |
-
This program is distributed in the hope that it will be useful,
|
11 |
-
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
-
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
-
GNU General Public License for more details.
|
14 |
-
|
15 |
-
You should have received a copy of the GNU General Public License
|
16 |
-
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
-
"""
|
18 |
-
|
19 |
-
import psutil
|
20 |
-
import logging
|
21 |
-
from enum import Enum
|
22 |
-
from comfy.cli_args import args
|
23 |
-
import torch
|
24 |
-
import sys
|
25 |
-
import platform
|
26 |
-
import weakref
|
27 |
-
import gc
|
28 |
-
|
29 |
-
class VRAMState(Enum):
|
30 |
-
DISABLED = 0 #No vram present: no need to move models to vram
|
31 |
-
NO_VRAM = 1 #Very low vram: enable all the options to save vram
|
32 |
-
LOW_VRAM = 2
|
33 |
-
NORMAL_VRAM = 3
|
34 |
-
HIGH_VRAM = 4
|
35 |
-
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
|
36 |
-
|
37 |
-
class CPUState(Enum):
|
38 |
-
GPU = 0
|
39 |
-
CPU = 1
|
40 |
-
MPS = 2
|
41 |
-
|
42 |
-
# Determine VRAM State
|
43 |
-
vram_state = VRAMState.NORMAL_VRAM
|
44 |
-
set_vram_to = VRAMState.NORMAL_VRAM
|
45 |
-
cpu_state = CPUState.GPU
|
46 |
-
|
47 |
-
total_vram = 0
|
48 |
-
|
49 |
-
xpu_available = False
|
50 |
-
torch_version = ""
|
51 |
-
try:
|
52 |
-
torch_version = torch.version.__version__
|
53 |
-
xpu_available = (int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) <= 4)) and torch.xpu.is_available()
|
54 |
-
except:
|
55 |
-
pass
|
56 |
-
|
57 |
-
lowvram_available = True
|
58 |
-
if args.deterministic:
|
59 |
-
logging.info("Using deterministic algorithms for pytorch")
|
60 |
-
torch.use_deterministic_algorithms(True, warn_only=True)
|
61 |
-
|
62 |
-
directml_enabled = False
|
63 |
-
if args.directml is not None:
|
64 |
-
import torch_directml
|
65 |
-
directml_enabled = True
|
66 |
-
device_index = args.directml
|
67 |
-
if device_index < 0:
|
68 |
-
directml_device = torch_directml.device()
|
69 |
-
else:
|
70 |
-
directml_device = torch_directml.device(device_index)
|
71 |
-
logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
|
72 |
-
# torch_directml.disable_tiled_resources(True)
|
73 |
-
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
|
74 |
-
|
75 |
-
try:
|
76 |
-
import intel_extension_for_pytorch as ipex
|
77 |
-
_ = torch.xpu.device_count()
|
78 |
-
xpu_available = xpu_available or torch.xpu.is_available()
|
79 |
-
except:
|
80 |
-
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
|
81 |
-
|
82 |
-
try:
|
83 |
-
if torch.backends.mps.is_available():
|
84 |
-
cpu_state = CPUState.MPS
|
85 |
-
import torch.mps
|
86 |
-
except:
|
87 |
-
pass
|
88 |
-
|
89 |
-
try:
|
90 |
-
import torch_npu # noqa: F401
|
91 |
-
_ = torch.npu.device_count()
|
92 |
-
npu_available = torch.npu.is_available()
|
93 |
-
except:
|
94 |
-
npu_available = False
|
95 |
-
|
96 |
-
if args.cpu:
|
97 |
-
cpu_state = CPUState.CPU
|
98 |
-
|
99 |
-
def is_intel_xpu():
|
100 |
-
global cpu_state
|
101 |
-
global xpu_available
|
102 |
-
if cpu_state == CPUState.GPU:
|
103 |
-
if xpu_available:
|
104 |
-
return True
|
105 |
-
return False
|
106 |
-
|
107 |
-
def is_ascend_npu():
|
108 |
-
global npu_available
|
109 |
-
if npu_available:
|
110 |
-
return True
|
111 |
-
return False
|
112 |
-
|
113 |
-
def get_torch_device():
|
114 |
-
global directml_enabled
|
115 |
-
global cpu_state
|
116 |
-
if directml_enabled:
|
117 |
-
global directml_device
|
118 |
-
return directml_device
|
119 |
-
if cpu_state == CPUState.MPS:
|
120 |
-
return torch.device("mps")
|
121 |
-
if cpu_state == CPUState.CPU:
|
122 |
-
return torch.device("cpu")
|
123 |
-
else:
|
124 |
-
if is_intel_xpu():
|
125 |
-
return torch.device("xpu", torch.xpu.current_device())
|
126 |
-
elif is_ascend_npu():
|
127 |
-
return torch.device("npu", torch.npu.current_device())
|
128 |
-
else:
|
129 |
-
return torch.device(torch.cuda.current_device())
|
130 |
-
|
131 |
-
def get_total_memory(dev=None, torch_total_too=False):
|
132 |
-
global directml_enabled
|
133 |
-
if dev is None:
|
134 |
-
dev = get_torch_device()
|
135 |
-
|
136 |
-
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
|
137 |
-
mem_total = psutil.virtual_memory().total
|
138 |
-
mem_total_torch = mem_total
|
139 |
-
else:
|
140 |
-
if directml_enabled:
|
141 |
-
mem_total = 1024 * 1024 * 1024 #TODO
|
142 |
-
mem_total_torch = mem_total
|
143 |
-
elif is_intel_xpu():
|
144 |
-
stats = torch.xpu.memory_stats(dev)
|
145 |
-
mem_reserved = stats['reserved_bytes.all.current']
|
146 |
-
mem_total_torch = mem_reserved
|
147 |
-
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
148 |
-
elif is_ascend_npu():
|
149 |
-
stats = torch.npu.memory_stats(dev)
|
150 |
-
mem_reserved = stats['reserved_bytes.all.current']
|
151 |
-
_, mem_total_npu = torch.npu.mem_get_info(dev)
|
152 |
-
mem_total_torch = mem_reserved
|
153 |
-
mem_total = mem_total_npu
|
154 |
-
else:
|
155 |
-
stats = torch.cuda.memory_stats(dev)
|
156 |
-
mem_reserved = stats['reserved_bytes.all.current']
|
157 |
-
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
|
158 |
-
mem_total_torch = mem_reserved
|
159 |
-
mem_total = mem_total_cuda
|
160 |
-
|
161 |
-
if torch_total_too:
|
162 |
-
return (mem_total, mem_total_torch)
|
163 |
-
else:
|
164 |
-
return mem_total
|
165 |
-
|
166 |
-
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
|
167 |
-
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
168 |
-
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
169 |
-
|
170 |
-
try:
|
171 |
-
logging.info("pytorch version: {}".format(torch_version))
|
172 |
-
except:
|
173 |
-
pass
|
174 |
-
|
175 |
-
try:
|
176 |
-
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
|
177 |
-
except:
|
178 |
-
OOM_EXCEPTION = Exception
|
179 |
-
|
180 |
-
XFORMERS_VERSION = ""
|
181 |
-
XFORMERS_ENABLED_VAE = True
|
182 |
-
if args.disable_xformers:
|
183 |
-
XFORMERS_IS_AVAILABLE = False
|
184 |
-
else:
|
185 |
-
try:
|
186 |
-
import xformers
|
187 |
-
import xformers.ops
|
188 |
-
XFORMERS_IS_AVAILABLE = True
|
189 |
-
try:
|
190 |
-
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
|
191 |
-
except:
|
192 |
-
pass
|
193 |
-
try:
|
194 |
-
XFORMERS_VERSION = xformers.version.__version__
|
195 |
-
logging.info("xformers version: {}".format(XFORMERS_VERSION))
|
196 |
-
if XFORMERS_VERSION.startswith("0.0.18"):
|
197 |
-
logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
|
198 |
-
logging.warning("Please downgrade or upgrade xformers to a different version.\n")
|
199 |
-
XFORMERS_ENABLED_VAE = False
|
200 |
-
except:
|
201 |
-
pass
|
202 |
-
except:
|
203 |
-
XFORMERS_IS_AVAILABLE = False
|
204 |
-
|
205 |
-
def is_nvidia():
|
206 |
-
global cpu_state
|
207 |
-
if cpu_state == CPUState.GPU:
|
208 |
-
if torch.version.cuda:
|
209 |
-
return True
|
210 |
-
return False
|
211 |
-
|
212 |
-
def is_amd():
|
213 |
-
global cpu_state
|
214 |
-
if cpu_state == CPUState.GPU:
|
215 |
-
if torch.version.hip:
|
216 |
-
return True
|
217 |
-
return False
|
218 |
-
|
219 |
-
MIN_WEIGHT_MEMORY_RATIO = 0.4
|
220 |
-
if is_nvidia():
|
221 |
-
MIN_WEIGHT_MEMORY_RATIO = 0.2
|
222 |
-
|
223 |
-
ENABLE_PYTORCH_ATTENTION = False
|
224 |
-
if args.use_pytorch_cross_attention:
|
225 |
-
ENABLE_PYTORCH_ATTENTION = True
|
226 |
-
XFORMERS_IS_AVAILABLE = False
|
227 |
-
|
228 |
-
try:
|
229 |
-
if is_nvidia():
|
230 |
-
if int(torch_version[0]) >= 2:
|
231 |
-
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
232 |
-
ENABLE_PYTORCH_ATTENTION = True
|
233 |
-
if is_intel_xpu() or is_ascend_npu():
|
234 |
-
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
235 |
-
ENABLE_PYTORCH_ATTENTION = True
|
236 |
-
except:
|
237 |
-
pass
|
238 |
-
|
239 |
-
if ENABLE_PYTORCH_ATTENTION:
|
240 |
-
torch.backends.cuda.enable_math_sdp(True)
|
241 |
-
torch.backends.cuda.enable_flash_sdp(True)
|
242 |
-
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
243 |
-
|
244 |
-
try:
|
245 |
-
if int(torch_version[0]) == 2 and int(torch_version[2]) >= 5:
|
246 |
-
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
|
247 |
-
except:
|
248 |
-
logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp")
|
249 |
-
|
250 |
-
if args.lowvram:
|
251 |
-
set_vram_to = VRAMState.LOW_VRAM
|
252 |
-
lowvram_available = True
|
253 |
-
elif args.novram:
|
254 |
-
set_vram_to = VRAMState.NO_VRAM
|
255 |
-
elif args.highvram or args.gpu_only:
|
256 |
-
vram_state = VRAMState.HIGH_VRAM
|
257 |
-
|
258 |
-
FORCE_FP32 = False
|
259 |
-
FORCE_FP16 = False
|
260 |
-
if args.force_fp32:
|
261 |
-
logging.info("Forcing FP32, if this improves things please report it.")
|
262 |
-
FORCE_FP32 = True
|
263 |
-
|
264 |
-
if args.force_fp16:
|
265 |
-
logging.info("Forcing FP16.")
|
266 |
-
FORCE_FP16 = True
|
267 |
-
|
268 |
-
if lowvram_available:
|
269 |
-
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
|
270 |
-
vram_state = set_vram_to
|
271 |
-
|
272 |
-
|
273 |
-
if cpu_state != CPUState.GPU:
|
274 |
-
vram_state = VRAMState.DISABLED
|
275 |
-
|
276 |
-
if cpu_state == CPUState.MPS:
|
277 |
-
vram_state = VRAMState.SHARED
|
278 |
-
|
279 |
-
logging.info(f"Set vram state to: {vram_state.name}")
|
280 |
-
|
281 |
-
DISABLE_SMART_MEMORY = args.disable_smart_memory
|
282 |
-
|
283 |
-
if DISABLE_SMART_MEMORY:
|
284 |
-
logging.info("Disabling smart memory management")
|
285 |
-
|
286 |
-
def get_torch_device_name(device):
|
287 |
-
if hasattr(device, 'type'):
|
288 |
-
if device.type == "cuda":
|
289 |
-
try:
|
290 |
-
allocator_backend = torch.cuda.get_allocator_backend()
|
291 |
-
except:
|
292 |
-
allocator_backend = ""
|
293 |
-
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
|
294 |
-
else:
|
295 |
-
return "{}".format(device.type)
|
296 |
-
elif is_intel_xpu():
|
297 |
-
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
298 |
-
elif is_ascend_npu():
|
299 |
-
return "{} {}".format(device, torch.npu.get_device_name(device))
|
300 |
-
else:
|
301 |
-
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
302 |
-
|
303 |
-
try:
|
304 |
-
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
|
305 |
-
except:
|
306 |
-
logging.warning("Could not pick default device.")
|
307 |
-
|
308 |
-
|
309 |
-
current_loaded_models = []
|
310 |
-
|
311 |
-
def module_size(module):
|
312 |
-
module_mem = 0
|
313 |
-
sd = module.state_dict()
|
314 |
-
for k in sd:
|
315 |
-
t = sd[k]
|
316 |
-
module_mem += t.nelement() * t.element_size()
|
317 |
-
return module_mem
|
318 |
-
|
319 |
-
class LoadedModel:
|
320 |
-
def __init__(self, model):
|
321 |
-
self._set_model(model)
|
322 |
-
self.device = model.load_device
|
323 |
-
self.real_model = None
|
324 |
-
self.currently_used = True
|
325 |
-
self.model_finalizer = None
|
326 |
-
self._patcher_finalizer = None
|
327 |
-
|
328 |
-
def _set_model(self, model):
|
329 |
-
self._model = weakref.ref(model)
|
330 |
-
if model.parent is not None:
|
331 |
-
self._parent_model = weakref.ref(model.parent)
|
332 |
-
self._patcher_finalizer = weakref.finalize(model, self._switch_parent)
|
333 |
-
|
334 |
-
def _switch_parent(self):
|
335 |
-
model = self._parent_model()
|
336 |
-
if model is not None:
|
337 |
-
self._set_model(model)
|
338 |
-
|
339 |
-
@property
|
340 |
-
def model(self):
|
341 |
-
return self._model()
|
342 |
-
|
343 |
-
def model_memory(self):
|
344 |
-
return self.model.model_size()
|
345 |
-
|
346 |
-
def model_loaded_memory(self):
|
347 |
-
return self.model.loaded_size()
|
348 |
-
|
349 |
-
def model_offloaded_memory(self):
|
350 |
-
return self.model.model_size() - self.model.loaded_size()
|
351 |
-
|
352 |
-
def model_memory_required(self, device):
|
353 |
-
if device == self.model.current_loaded_device():
|
354 |
-
return self.model_offloaded_memory()
|
355 |
-
else:
|
356 |
-
return self.model_memory()
|
357 |
-
|
358 |
-
def model_load(self, lowvram_model_memory=0, force_patch_weights=False):
|
359 |
-
self.model.model_patches_to(self.device)
|
360 |
-
self.model.model_patches_to(self.model.model_dtype())
|
361 |
-
|
362 |
-
# if self.model.loaded_size() > 0:
|
363 |
-
use_more_vram = lowvram_model_memory
|
364 |
-
if use_more_vram == 0:
|
365 |
-
use_more_vram = 1e32
|
366 |
-
self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights)
|
367 |
-
real_model = self.model.model
|
368 |
-
|
369 |
-
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None:
|
370 |
-
with torch.no_grad():
|
371 |
-
real_model = ipex.optimize(real_model.eval(), inplace=True, graph_mode=True, concat_linear=True)
|
372 |
-
|
373 |
-
self.real_model = weakref.ref(real_model)
|
374 |
-
self.model_finalizer = weakref.finalize(real_model, cleanup_models)
|
375 |
-
return real_model
|
376 |
-
|
377 |
-
def should_reload_model(self, force_patch_weights=False):
|
378 |
-
if force_patch_weights and self.model.lowvram_patch_counter() > 0:
|
379 |
-
return True
|
380 |
-
return False
|
381 |
-
|
382 |
-
def model_unload(self, memory_to_free=None, unpatch_weights=True):
|
383 |
-
if memory_to_free is not None:
|
384 |
-
if memory_to_free < self.model.loaded_size():
|
385 |
-
freed = self.model.partially_unload(self.model.offload_device, memory_to_free)
|
386 |
-
if freed >= memory_to_free:
|
387 |
-
return False
|
388 |
-
self.model.detach(unpatch_weights)
|
389 |
-
self.model_finalizer.detach()
|
390 |
-
self.model_finalizer = None
|
391 |
-
self.real_model = None
|
392 |
-
return True
|
393 |
-
|
394 |
-
def model_use_more_vram(self, extra_memory, force_patch_weights=False):
|
395 |
-
return self.model.partially_load(self.device, extra_memory, force_patch_weights=force_patch_weights)
|
396 |
-
|
397 |
-
def __eq__(self, other):
|
398 |
-
return self.model is other.model
|
399 |
-
|
400 |
-
def __del__(self):
|
401 |
-
if self._patcher_finalizer is not None:
|
402 |
-
self._patcher_finalizer.detach()
|
403 |
-
|
404 |
-
def is_dead(self):
|
405 |
-
return self.real_model() is not None and self.model is None
|
406 |
-
|
407 |
-
|
408 |
-
def use_more_memory(extra_memory, loaded_models, device):
|
409 |
-
for m in loaded_models:
|
410 |
-
if m.device == device:
|
411 |
-
extra_memory -= m.model_use_more_vram(extra_memory)
|
412 |
-
if extra_memory <= 0:
|
413 |
-
break
|
414 |
-
|
415 |
-
def offloaded_memory(loaded_models, device):
|
416 |
-
offloaded_mem = 0
|
417 |
-
for m in loaded_models:
|
418 |
-
if m.device == device:
|
419 |
-
offloaded_mem += m.model_offloaded_memory()
|
420 |
-
return offloaded_mem
|
421 |
-
|
422 |
-
WINDOWS = any(platform.win32_ver())
|
423 |
-
|
424 |
-
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
|
425 |
-
if WINDOWS:
|
426 |
-
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
|
427 |
-
|
428 |
-
if args.reserve_vram is not None:
|
429 |
-
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
|
430 |
-
logging.debug("Reserving {}MB vram for other applications.".format(EXTRA_RESERVED_VRAM / (1024 * 1024)))
|
431 |
-
|
432 |
-
def extra_reserved_memory():
|
433 |
-
return EXTRA_RESERVED_VRAM
|
434 |
-
|
435 |
-
def minimum_inference_memory():
|
436 |
-
return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory()
|
437 |
-
|
438 |
-
def free_memory(memory_required, device, keep_loaded=[]):
|
439 |
-
cleanup_models_gc()
|
440 |
-
unloaded_model = []
|
441 |
-
can_unload = []
|
442 |
-
unloaded_models = []
|
443 |
-
|
444 |
-
for i in range(len(current_loaded_models) -1, -1, -1):
|
445 |
-
shift_model = current_loaded_models[i]
|
446 |
-
if shift_model.device == device:
|
447 |
-
if shift_model not in keep_loaded and not shift_model.is_dead():
|
448 |
-
can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
|
449 |
-
shift_model.currently_used = False
|
450 |
-
|
451 |
-
for x in sorted(can_unload):
|
452 |
-
i = x[-1]
|
453 |
-
memory_to_free = None
|
454 |
-
if not DISABLE_SMART_MEMORY:
|
455 |
-
free_mem = get_free_memory(device)
|
456 |
-
if free_mem > memory_required:
|
457 |
-
break
|
458 |
-
memory_to_free = memory_required - free_mem
|
459 |
-
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
|
460 |
-
if current_loaded_models[i].model_unload(memory_to_free):
|
461 |
-
unloaded_model.append(i)
|
462 |
-
|
463 |
-
for i in sorted(unloaded_model, reverse=True):
|
464 |
-
unloaded_models.append(current_loaded_models.pop(i))
|
465 |
-
|
466 |
-
if len(unloaded_model) > 0:
|
467 |
-
soft_empty_cache()
|
468 |
-
else:
|
469 |
-
if vram_state != VRAMState.HIGH_VRAM:
|
470 |
-
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
|
471 |
-
if mem_free_torch > mem_free_total * 0.25:
|
472 |
-
soft_empty_cache()
|
473 |
-
return unloaded_models
|
474 |
-
|
475 |
-
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
|
476 |
-
cleanup_models_gc()
|
477 |
-
global vram_state
|
478 |
-
|
479 |
-
inference_memory = minimum_inference_memory()
|
480 |
-
extra_mem = max(inference_memory, memory_required + extra_reserved_memory())
|
481 |
-
if minimum_memory_required is None:
|
482 |
-
minimum_memory_required = extra_mem
|
483 |
-
else:
|
484 |
-
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())
|
485 |
-
|
486 |
-
models = set(models)
|
487 |
-
|
488 |
-
models_to_load = []
|
489 |
-
|
490 |
-
for x in models:
|
491 |
-
loaded_model = LoadedModel(x)
|
492 |
-
try:
|
493 |
-
loaded_model_index = current_loaded_models.index(loaded_model)
|
494 |
-
except:
|
495 |
-
loaded_model_index = None
|
496 |
-
|
497 |
-
if loaded_model_index is not None:
|
498 |
-
loaded = current_loaded_models[loaded_model_index]
|
499 |
-
loaded.currently_used = True
|
500 |
-
models_to_load.append(loaded)
|
501 |
-
else:
|
502 |
-
if hasattr(x, "model"):
|
503 |
-
logging.info(f"Requested to load {x.model.__class__.__name__}")
|
504 |
-
models_to_load.append(loaded_model)
|
505 |
-
|
506 |
-
for loaded_model in models_to_load:
|
507 |
-
to_unload = []
|
508 |
-
for i in range(len(current_loaded_models)):
|
509 |
-
if loaded_model.model.is_clone(current_loaded_models[i].model):
|
510 |
-
to_unload = [i] + to_unload
|
511 |
-
for i in to_unload:
|
512 |
-
current_loaded_models.pop(i).model.detach(unpatch_all=False)
|
513 |
-
|
514 |
-
total_memory_required = {}
|
515 |
-
for loaded_model in models_to_load:
|
516 |
-
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
|
517 |
-
|
518 |
-
for device in total_memory_required:
|
519 |
-
if device != torch.device("cpu"):
|
520 |
-
free_memory(total_memory_required[device] * 1.1 + extra_mem, device)
|
521 |
-
|
522 |
-
for device in total_memory_required:
|
523 |
-
if device != torch.device("cpu"):
|
524 |
-
free_mem = get_free_memory(device)
|
525 |
-
if free_mem < minimum_memory_required:
|
526 |
-
models_l = free_memory(minimum_memory_required, device)
|
527 |
-
logging.info("{} models unloaded.".format(len(models_l)))
|
528 |
-
|
529 |
-
for loaded_model in models_to_load:
|
530 |
-
model = loaded_model.model
|
531 |
-
torch_dev = model.load_device
|
532 |
-
if is_device_cpu(torch_dev):
|
533 |
-
vram_set_state = VRAMState.DISABLED
|
534 |
-
else:
|
535 |
-
vram_set_state = vram_state
|
536 |
-
lowvram_model_memory = 0
|
537 |
-
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM) and not force_full_load:
|
538 |
-
model_size = loaded_model.model_memory_required(torch_dev)
|
539 |
-
loaded_memory = loaded_model.model_loaded_memory()
|
540 |
-
current_free_mem = get_free_memory(torch_dev) + loaded_memory
|
541 |
-
|
542 |
-
lowvram_model_memory = max(64 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
|
543 |
-
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
|
544 |
-
if model_size <= lowvram_model_memory: #only switch to lowvram if really necessary
|
545 |
-
lowvram_model_memory = 0
|
546 |
-
|
547 |
-
if vram_set_state == VRAMState.NO_VRAM:
|
548 |
-
lowvram_model_memory = 0.1
|
549 |
-
|
550 |
-
loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
|
551 |
-
current_loaded_models.insert(0, loaded_model)
|
552 |
-
return
|
553 |
-
|
554 |
-
def load_model_gpu(model):
|
555 |
-
return load_models_gpu([model])
|
556 |
-
|
557 |
-
def loaded_models(only_currently_used=False):
|
558 |
-
output = []
|
559 |
-
for m in current_loaded_models:
|
560 |
-
if only_currently_used:
|
561 |
-
if not m.currently_used:
|
562 |
-
continue
|
563 |
-
|
564 |
-
output.append(m.model)
|
565 |
-
return output
|
566 |
-
|
567 |
-
|
568 |
-
def cleanup_models_gc():
|
569 |
-
do_gc = False
|
570 |
-
for i in range(len(current_loaded_models)):
|
571 |
-
cur = current_loaded_models[i]
|
572 |
-
if cur.is_dead():
|
573 |
-
logging.info("Potential memory leak detected with model {}, doing a full garbage collect, for maximum performance avoid circular references in the model code.".format(cur.real_model().__class__.__name__))
|
574 |
-
do_gc = True
|
575 |
-
break
|
576 |
-
|
577 |
-
if do_gc:
|
578 |
-
gc.collect()
|
579 |
-
soft_empty_cache()
|
580 |
-
|
581 |
-
for i in range(len(current_loaded_models)):
|
582 |
-
cur = current_loaded_models[i]
|
583 |
-
if cur.is_dead():
|
584 |
-
logging.warning("WARNING, memory leak with model {}. Please make sure it is not being referenced from somewhere.".format(cur.real_model().__class__.__name__))
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
def cleanup_models():
|
589 |
-
to_delete = []
|
590 |
-
for i in range(len(current_loaded_models)):
|
591 |
-
if current_loaded_models[i].real_model() is None:
|
592 |
-
to_delete = [i] + to_delete
|
593 |
-
|
594 |
-
for i in to_delete:
|
595 |
-
x = current_loaded_models.pop(i)
|
596 |
-
del x
|
597 |
-
|
598 |
-
def dtype_size(dtype):
|
599 |
-
dtype_size = 4
|
600 |
-
if dtype == torch.float16 or dtype == torch.bfloat16:
|
601 |
-
dtype_size = 2
|
602 |
-
elif dtype == torch.float32:
|
603 |
-
dtype_size = 4
|
604 |
-
else:
|
605 |
-
try:
|
606 |
-
dtype_size = dtype.itemsize
|
607 |
-
except: #Old pytorch doesn't have .itemsize
|
608 |
-
pass
|
609 |
-
return dtype_size
|
610 |
-
|
611 |
-
def unet_offload_device():
|
612 |
-
if vram_state == VRAMState.HIGH_VRAM:
|
613 |
-
return get_torch_device()
|
614 |
-
else:
|
615 |
-
return torch.device("cpu")
|
616 |
-
|
617 |
-
def unet_inital_load_device(parameters, dtype):
|
618 |
-
torch_dev = get_torch_device()
|
619 |
-
if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.SHARED:
|
620 |
-
return torch_dev
|
621 |
-
|
622 |
-
cpu_dev = torch.device("cpu")
|
623 |
-
if DISABLE_SMART_MEMORY:
|
624 |
-
return cpu_dev
|
625 |
-
|
626 |
-
model_size = dtype_size(dtype) * parameters
|
627 |
-
|
628 |
-
mem_dev = get_free_memory(torch_dev)
|
629 |
-
mem_cpu = get_free_memory(cpu_dev)
|
630 |
-
if mem_dev > mem_cpu and model_size < mem_dev:
|
631 |
-
return torch_dev
|
632 |
-
else:
|
633 |
-
return cpu_dev
|
634 |
-
|
635 |
-
def maximum_vram_for_weights(device=None):
|
636 |
-
return (get_total_memory(device) * 0.88 - minimum_inference_memory())
|
637 |
-
|
638 |
-
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
|
639 |
-
if model_params < 0:
|
640 |
-
model_params = 1000000000000000000000
|
641 |
-
if args.fp32_unet:
|
642 |
-
return torch.float32
|
643 |
-
if args.fp64_unet:
|
644 |
-
return torch.float64
|
645 |
-
if args.bf16_unet:
|
646 |
-
return torch.bfloat16
|
647 |
-
if args.fp16_unet:
|
648 |
-
return torch.float16
|
649 |
-
if args.fp8_e4m3fn_unet:
|
650 |
-
return torch.float8_e4m3fn
|
651 |
-
if args.fp8_e5m2_unet:
|
652 |
-
return torch.float8_e5m2
|
653 |
-
|
654 |
-
fp8_dtype = None
|
655 |
-
try:
|
656 |
-
for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
657 |
-
if dtype in supported_dtypes:
|
658 |
-
fp8_dtype = dtype
|
659 |
-
break
|
660 |
-
except:
|
661 |
-
pass
|
662 |
-
|
663 |
-
if fp8_dtype is not None:
|
664 |
-
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
|
665 |
-
return fp8_dtype
|
666 |
-
|
667 |
-
free_model_memory = maximum_vram_for_weights(device)
|
668 |
-
if model_params * 2 > free_model_memory:
|
669 |
-
return fp8_dtype
|
670 |
-
|
671 |
-
for dt in supported_dtypes:
|
672 |
-
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params):
|
673 |
-
if torch.float16 in supported_dtypes:
|
674 |
-
return torch.float16
|
675 |
-
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params):
|
676 |
-
if torch.bfloat16 in supported_dtypes:
|
677 |
-
return torch.bfloat16
|
678 |
-
|
679 |
-
for dt in supported_dtypes:
|
680 |
-
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True):
|
681 |
-
if torch.float16 in supported_dtypes:
|
682 |
-
return torch.float16
|
683 |
-
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True):
|
684 |
-
if torch.bfloat16 in supported_dtypes:
|
685 |
-
return torch.bfloat16
|
686 |
-
|
687 |
-
return torch.float32
|
688 |
-
|
689 |
-
# None means no manual cast
|
690 |
-
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
|
691 |
-
if weight_dtype == torch.float32 or weight_dtype == torch.float64:
|
692 |
-
return None
|
693 |
-
|
694 |
-
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
|
695 |
-
if fp16_supported and weight_dtype == torch.float16:
|
696 |
-
return None
|
697 |
-
|
698 |
-
bf16_supported = should_use_bf16(inference_device)
|
699 |
-
if bf16_supported and weight_dtype == torch.bfloat16:
|
700 |
-
return None
|
701 |
-
|
702 |
-
fp16_supported = should_use_fp16(inference_device, prioritize_performance=True)
|
703 |
-
for dt in supported_dtypes:
|
704 |
-
if dt == torch.float16 and fp16_supported:
|
705 |
-
return torch.float16
|
706 |
-
if dt == torch.bfloat16 and bf16_supported:
|
707 |
-
return torch.bfloat16
|
708 |
-
|
709 |
-
return torch.float32
|
710 |
-
|
711 |
-
def text_encoder_offload_device():
|
712 |
-
if args.gpu_only:
|
713 |
-
return get_torch_device()
|
714 |
-
else:
|
715 |
-
return torch.device("cpu")
|
716 |
-
|
717 |
-
def text_encoder_device():
|
718 |
-
if args.gpu_only:
|
719 |
-
return get_torch_device()
|
720 |
-
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
|
721 |
-
if should_use_fp16(prioritize_performance=False):
|
722 |
-
return get_torch_device()
|
723 |
-
else:
|
724 |
-
return torch.device("cpu")
|
725 |
-
else:
|
726 |
-
return torch.device("cpu")
|
727 |
-
|
728 |
-
def text_encoder_initial_device(load_device, offload_device, model_size=0):
|
729 |
-
if load_device == offload_device or model_size <= 1024 * 1024 * 1024:
|
730 |
-
return offload_device
|
731 |
-
|
732 |
-
if is_device_mps(load_device):
|
733 |
-
return load_device
|
734 |
-
|
735 |
-
mem_l = get_free_memory(load_device)
|
736 |
-
mem_o = get_free_memory(offload_device)
|
737 |
-
if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l:
|
738 |
-
return load_device
|
739 |
-
else:
|
740 |
-
return offload_device
|
741 |
-
|
742 |
-
def text_encoder_dtype(device=None):
|
743 |
-
if args.fp8_e4m3fn_text_enc:
|
744 |
-
return torch.float8_e4m3fn
|
745 |
-
elif args.fp8_e5m2_text_enc:
|
746 |
-
return torch.float8_e5m2
|
747 |
-
elif args.fp16_text_enc:
|
748 |
-
return torch.float16
|
749 |
-
elif args.fp32_text_enc:
|
750 |
-
return torch.float32
|
751 |
-
|
752 |
-
if is_device_cpu(device):
|
753 |
-
return torch.float16
|
754 |
-
|
755 |
-
return torch.float16
|
756 |
-
|
757 |
-
|
758 |
-
def intermediate_device():
|
759 |
-
if args.gpu_only:
|
760 |
-
return get_torch_device()
|
761 |
-
else:
|
762 |
-
return torch.device("cpu")
|
763 |
-
|
764 |
-
def vae_device():
|
765 |
-
if args.cpu_vae:
|
766 |
-
return torch.device("cpu")
|
767 |
-
return get_torch_device()
|
768 |
-
|
769 |
-
def vae_offload_device():
|
770 |
-
if args.gpu_only:
|
771 |
-
return get_torch_device()
|
772 |
-
else:
|
773 |
-
return torch.device("cpu")
|
774 |
-
|
775 |
-
def vae_dtype(device=None, allowed_dtypes=[]):
|
776 |
-
if args.fp16_vae:
|
777 |
-
return torch.float16
|
778 |
-
elif args.bf16_vae:
|
779 |
-
return torch.bfloat16
|
780 |
-
elif args.fp32_vae:
|
781 |
-
return torch.float32
|
782 |
-
|
783 |
-
for d in allowed_dtypes:
|
784 |
-
if d == torch.float16 and should_use_fp16(device):
|
785 |
-
return d
|
786 |
-
|
787 |
-
# NOTE: bfloat16 seems to work on AMD for the VAE but is extremely slow in some cases compared to fp32
|
788 |
-
if d == torch.bfloat16 and (not is_amd()) and should_use_bf16(device):
|
789 |
-
return d
|
790 |
-
|
791 |
-
return torch.float32
|
792 |
-
|
793 |
-
def get_autocast_device(dev):
|
794 |
-
if hasattr(dev, 'type'):
|
795 |
-
return dev.type
|
796 |
-
return "cuda"
|
797 |
-
|
798 |
-
def supports_dtype(device, dtype): #TODO
|
799 |
-
if dtype == torch.float32:
|
800 |
-
return True
|
801 |
-
if is_device_cpu(device):
|
802 |
-
return False
|
803 |
-
if dtype == torch.float16:
|
804 |
-
return True
|
805 |
-
if dtype == torch.bfloat16:
|
806 |
-
return True
|
807 |
-
return False
|
808 |
-
|
809 |
-
def supports_cast(device, dtype): #TODO
|
810 |
-
if dtype == torch.float32:
|
811 |
-
return True
|
812 |
-
if dtype == torch.float16:
|
813 |
-
return True
|
814 |
-
if directml_enabled: #TODO: test this
|
815 |
-
return False
|
816 |
-
if dtype == torch.bfloat16:
|
817 |
-
return True
|
818 |
-
if is_device_mps(device):
|
819 |
-
return False
|
820 |
-
if dtype == torch.float8_e4m3fn:
|
821 |
-
return True
|
822 |
-
if dtype == torch.float8_e5m2:
|
823 |
-
return True
|
824 |
-
return False
|
825 |
-
|
826 |
-
def pick_weight_dtype(dtype, fallback_dtype, device=None):
|
827 |
-
if dtype is None:
|
828 |
-
dtype = fallback_dtype
|
829 |
-
elif dtype_size(dtype) > dtype_size(fallback_dtype):
|
830 |
-
dtype = fallback_dtype
|
831 |
-
|
832 |
-
if not supports_cast(device, dtype):
|
833 |
-
dtype = fallback_dtype
|
834 |
-
|
835 |
-
return dtype
|
836 |
-
|
837 |
-
def device_supports_non_blocking(device):
|
838 |
-
if is_device_mps(device):
|
839 |
-
return False #pytorch bug? mps doesn't support non blocking
|
840 |
-
if is_intel_xpu():
|
841 |
-
return False
|
842 |
-
if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
|
843 |
-
return False
|
844 |
-
if directml_enabled:
|
845 |
-
return False
|
846 |
-
return True
|
847 |
-
|
848 |
-
def device_should_use_non_blocking(device):
|
849 |
-
if not device_supports_non_blocking(device):
|
850 |
-
return False
|
851 |
-
return False
|
852 |
-
# return True #TODO: figure out why this causes memory issues on Nvidia and possibly others
|
853 |
-
|
854 |
-
def force_channels_last():
|
855 |
-
if args.force_channels_last:
|
856 |
-
return True
|
857 |
-
|
858 |
-
#TODO
|
859 |
-
return False
|
860 |
-
|
861 |
-
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
|
862 |
-
if device is None or weight.device == device:
|
863 |
-
if not copy:
|
864 |
-
if dtype is None or weight.dtype == dtype:
|
865 |
-
return weight
|
866 |
-
return weight.to(dtype=dtype, copy=copy)
|
867 |
-
|
868 |
-
r = torch.empty_like(weight, dtype=dtype, device=device)
|
869 |
-
r.copy_(weight, non_blocking=non_blocking)
|
870 |
-
return r
|
871 |
-
|
872 |
-
def cast_to_device(tensor, device, dtype, copy=False):
|
873 |
-
non_blocking = device_supports_non_blocking(device)
|
874 |
-
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
|
875 |
-
|
876 |
-
def sage_attention_enabled():
|
877 |
-
return args.use_sage_attention
|
878 |
-
|
879 |
-
def xformers_enabled():
|
880 |
-
global directml_enabled
|
881 |
-
global cpu_state
|
882 |
-
if cpu_state != CPUState.GPU:
|
883 |
-
return False
|
884 |
-
if is_intel_xpu():
|
885 |
-
return False
|
886 |
-
if is_ascend_npu():
|
887 |
-
return False
|
888 |
-
if directml_enabled:
|
889 |
-
return False
|
890 |
-
return XFORMERS_IS_AVAILABLE
|
891 |
-
|
892 |
-
|
893 |
-
def xformers_enabled_vae():
|
894 |
-
enabled = xformers_enabled()
|
895 |
-
if not enabled:
|
896 |
-
return False
|
897 |
-
|
898 |
-
return XFORMERS_ENABLED_VAE
|
899 |
-
|
900 |
-
def pytorch_attention_enabled():
|
901 |
-
global ENABLE_PYTORCH_ATTENTION
|
902 |
-
return ENABLE_PYTORCH_ATTENTION
|
903 |
-
|
904 |
-
def pytorch_attention_flash_attention():
|
905 |
-
global ENABLE_PYTORCH_ATTENTION
|
906 |
-
if ENABLE_PYTORCH_ATTENTION:
|
907 |
-
#TODO: more reliable way of checking for flash attention?
|
908 |
-
if is_nvidia(): #pytorch flash attention only works on Nvidia
|
909 |
-
return True
|
910 |
-
if is_intel_xpu():
|
911 |
-
return True
|
912 |
-
if is_ascend_npu():
|
913 |
-
return True
|
914 |
-
return False
|
915 |
-
|
916 |
-
def mac_version():
|
917 |
-
try:
|
918 |
-
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
|
919 |
-
except:
|
920 |
-
return None
|
921 |
-
|
922 |
-
def force_upcast_attention_dtype():
|
923 |
-
upcast = args.force_upcast_attention
|
924 |
-
|
925 |
-
macos_version = mac_version()
|
926 |
-
if macos_version is not None and ((14, 5) <= macos_version <= (15, 2)): # black image bug on recent versions of macOS
|
927 |
-
upcast = True
|
928 |
-
|
929 |
-
if upcast:
|
930 |
-
return torch.float32
|
931 |
-
else:
|
932 |
-
return None
|
933 |
-
|
934 |
-
def get_free_memory(dev=None, torch_free_too=False):
|
935 |
-
global directml_enabled
|
936 |
-
if dev is None:
|
937 |
-
dev = get_torch_device()
|
938 |
-
|
939 |
-
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
|
940 |
-
mem_free_total = psutil.virtual_memory().available
|
941 |
-
mem_free_torch = mem_free_total
|
942 |
-
else:
|
943 |
-
if directml_enabled:
|
944 |
-
mem_free_total = 1024 * 1024 * 1024 #TODO
|
945 |
-
mem_free_torch = mem_free_total
|
946 |
-
elif is_intel_xpu():
|
947 |
-
stats = torch.xpu.memory_stats(dev)
|
948 |
-
mem_active = stats['active_bytes.all.current']
|
949 |
-
mem_reserved = stats['reserved_bytes.all.current']
|
950 |
-
mem_free_torch = mem_reserved - mem_active
|
951 |
-
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
|
952 |
-
mem_free_total = mem_free_xpu + mem_free_torch
|
953 |
-
elif is_ascend_npu():
|
954 |
-
stats = torch.npu.memory_stats(dev)
|
955 |
-
mem_active = stats['active_bytes.all.current']
|
956 |
-
mem_reserved = stats['reserved_bytes.all.current']
|
957 |
-
mem_free_npu, _ = torch.npu.mem_get_info(dev)
|
958 |
-
mem_free_torch = mem_reserved - mem_active
|
959 |
-
mem_free_total = mem_free_npu + mem_free_torch
|
960 |
-
else:
|
961 |
-
stats = torch.cuda.memory_stats(dev)
|
962 |
-
mem_active = stats['active_bytes.all.current']
|
963 |
-
mem_reserved = stats['reserved_bytes.all.current']
|
964 |
-
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
965 |
-
mem_free_torch = mem_reserved - mem_active
|
966 |
-
mem_free_total = mem_free_cuda + mem_free_torch
|
967 |
-
|
968 |
-
if torch_free_too:
|
969 |
-
return (mem_free_total, mem_free_torch)
|
970 |
-
else:
|
971 |
-
return mem_free_total
|
972 |
-
|
973 |
-
def cpu_mode():
|
974 |
-
global cpu_state
|
975 |
-
return cpu_state == CPUState.CPU
|
976 |
-
|
977 |
-
def mps_mode():
|
978 |
-
global cpu_state
|
979 |
-
return cpu_state == CPUState.MPS
|
980 |
-
|
981 |
-
def is_device_type(device, type):
|
982 |
-
if hasattr(device, 'type'):
|
983 |
-
if (device.type == type):
|
984 |
-
return True
|
985 |
-
return False
|
986 |
-
|
987 |
-
def is_device_cpu(device):
|
988 |
-
return is_device_type(device, 'cpu')
|
989 |
-
|
990 |
-
def is_device_mps(device):
|
991 |
-
return is_device_type(device, 'mps')
|
992 |
-
|
993 |
-
def is_device_cuda(device):
|
994 |
-
return is_device_type(device, 'cuda')
|
995 |
-
|
996 |
-
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
|
997 |
-
global directml_enabled
|
998 |
-
|
999 |
-
if device is not None:
|
1000 |
-
if is_device_cpu(device):
|
1001 |
-
return False
|
1002 |
-
|
1003 |
-
if FORCE_FP16:
|
1004 |
-
return True
|
1005 |
-
|
1006 |
-
if FORCE_FP32:
|
1007 |
-
return False
|
1008 |
-
|
1009 |
-
if directml_enabled:
|
1010 |
-
return False
|
1011 |
-
|
1012 |
-
if (device is not None and is_device_mps(device)) or mps_mode():
|
1013 |
-
return True
|
1014 |
-
|
1015 |
-
if cpu_mode():
|
1016 |
-
return False
|
1017 |
-
|
1018 |
-
if is_intel_xpu():
|
1019 |
-
return True
|
1020 |
-
|
1021 |
-
if is_ascend_npu():
|
1022 |
-
return True
|
1023 |
-
|
1024 |
-
if torch.version.hip:
|
1025 |
-
return True
|
1026 |
-
|
1027 |
-
props = torch.cuda.get_device_properties(device)
|
1028 |
-
if props.major >= 8:
|
1029 |
-
return True
|
1030 |
-
|
1031 |
-
if props.major < 6:
|
1032 |
-
return False
|
1033 |
-
|
1034 |
-
#FP16 is confirmed working on a 1080 (GP104) and on latest pytorch actually seems faster than fp32
|
1035 |
-
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
|
1036 |
-
for x in nvidia_10_series:
|
1037 |
-
if x in props.name.lower():
|
1038 |
-
if WINDOWS or manual_cast:
|
1039 |
-
return True
|
1040 |
-
else:
|
1041 |
-
return False #weird linux behavior where fp32 is faster
|
1042 |
-
|
1043 |
-
if manual_cast:
|
1044 |
-
free_model_memory = maximum_vram_for_weights(device)
|
1045 |
-
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
1046 |
-
return True
|
1047 |
-
|
1048 |
-
if props.major < 7:
|
1049 |
-
return False
|
1050 |
-
|
1051 |
-
#FP16 is just broken on these cards
|
1052 |
-
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
|
1053 |
-
for x in nvidia_16_series:
|
1054 |
-
if x in props.name:
|
1055 |
-
return False
|
1056 |
-
|
1057 |
-
return True
|
1058 |
-
|
1059 |
-
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
|
1060 |
-
if device is not None:
|
1061 |
-
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
|
1062 |
-
return False
|
1063 |
-
|
1064 |
-
if FORCE_FP32:
|
1065 |
-
return False
|
1066 |
-
|
1067 |
-
if directml_enabled:
|
1068 |
-
return False
|
1069 |
-
|
1070 |
-
if (device is not None and is_device_mps(device)) or mps_mode():
|
1071 |
-
if mac_version() < (14,):
|
1072 |
-
return False
|
1073 |
-
return True
|
1074 |
-
|
1075 |
-
if cpu_mode():
|
1076 |
-
return False
|
1077 |
-
|
1078 |
-
if is_intel_xpu():
|
1079 |
-
return True
|
1080 |
-
|
1081 |
-
props = torch.cuda.get_device_properties(device)
|
1082 |
-
if props.major >= 8:
|
1083 |
-
return True
|
1084 |
-
|
1085 |
-
bf16_works = torch.cuda.is_bf16_supported()
|
1086 |
-
|
1087 |
-
if bf16_works or manual_cast:
|
1088 |
-
free_model_memory = maximum_vram_for_weights(device)
|
1089 |
-
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
1090 |
-
return True
|
1091 |
-
|
1092 |
-
return False
|
1093 |
-
|
1094 |
-
def supports_fp8_compute(device=None):
|
1095 |
-
if not is_nvidia():
|
1096 |
-
return False
|
1097 |
-
|
1098 |
-
props = torch.cuda.get_device_properties(device)
|
1099 |
-
if props.major >= 9:
|
1100 |
-
return True
|
1101 |
-
if props.major < 8:
|
1102 |
-
return False
|
1103 |
-
if props.minor < 9:
|
1104 |
-
return False
|
1105 |
-
|
1106 |
-
if int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) < 3):
|
1107 |
-
return False
|
1108 |
-
|
1109 |
-
if WINDOWS:
|
1110 |
-
if (int(torch_version[0]) == 2 and int(torch_version[2]) < 4):
|
1111 |
-
return False
|
1112 |
-
|
1113 |
-
return True
|
1114 |
-
|
1115 |
-
def soft_empty_cache(force=False):
|
1116 |
-
global cpu_state
|
1117 |
-
if cpu_state == CPUState.MPS:
|
1118 |
-
torch.mps.empty_cache()
|
1119 |
-
elif is_intel_xpu():
|
1120 |
-
torch.xpu.empty_cache()
|
1121 |
-
elif is_ascend_npu():
|
1122 |
-
torch.npu.empty_cache()
|
1123 |
-
elif torch.cuda.is_available():
|
1124 |
-
torch.cuda.empty_cache()
|
1125 |
-
torch.cuda.ipc_collect()
|
1126 |
-
|
1127 |
-
def unload_all_models():
|
1128 |
-
free_memory(1e30, get_torch_device())
|
1129 |
-
|
1130 |
-
|
1131 |
-
#TODO: might be cleaner to put this somewhere else
|
1132 |
-
import threading
|
1133 |
-
|
1134 |
-
class InterruptProcessingException(Exception):
|
1135 |
-
pass
|
1136 |
-
|
1137 |
-
interrupt_processing_mutex = threading.RLock()
|
1138 |
-
|
1139 |
-
interrupt_processing = False
|
1140 |
-
def interrupt_current_processing(value=True):
|
1141 |
-
global interrupt_processing
|
1142 |
-
global interrupt_processing_mutex
|
1143 |
-
with interrupt_processing_mutex:
|
1144 |
-
interrupt_processing = value
|
1145 |
-
|
1146 |
-
def processing_interrupted():
|
1147 |
-
global interrupt_processing
|
1148 |
-
global interrupt_processing_mutex
|
1149 |
-
with interrupt_processing_mutex:
|
1150 |
-
return interrupt_processing
|
1151 |
-
|
1152 |
-
def throw_exception_if_processing_interrupted():
|
1153 |
-
global interrupt_processing
|
1154 |
-
global interrupt_processing_mutex
|
1155 |
-
with interrupt_processing_mutex:
|
1156 |
-
if interrupt_processing:
|
1157 |
-
interrupt_processing = False
|
1158 |
-
raise InterruptProcessingException()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|