import gradio as gr import numpy as np import random import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch from InstantID import InstantIDModelLoader, InstantIDFaceAnalysis, ApplyInstantID # from InstantID import InstantIDModelLoader, InstantIDFaceAnalysis, ApplyInstantID device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "emilianJR/epiCRealism" # Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 class InstantIDPipeline(DiffusionPipeline): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.instantid_model = None self.face_analyzer = None def load_instantid(self, model_path, device="cuda"): # Initialize InstantID components self.instantid_model = InstantIDModelLoader.load_model(model_path)[0] self.face_analyzer = InstantIDFaceAnalysis.load_insight_face( "CUDA" if device == "cuda" else "CPU" )[0] def __call__( self, prompt, negative_prompt=None, image=None, num_inference_steps=50, guidance_scale=7.5, width=512, height=512, generator=None, ): # Regular diffusion pipeline call if no face image is provided if image is None: return super().__call__( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, width=width, height=height, generator=generator, ) # Apply InstantID processing when image is provided face_features = self.face_analyzer.get(image) if not face_features: raise ValueError("No face detected in the provided image") # Process with InstantID # Reference implementation from InstantID/InstantID.py: # Lines referencing ApplyInstantID class implementation: # Initialize custom pipeline pipe = InstantIDPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) # Load InstantID components if available try: instantid_model_path = "models/instantid/instantid.safetensors" # Adjust path as needed pipe.load_instantid(instantid_model_path, device) except Exception as e: print(f"Warning: InstantID initialization failed: {e}") MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, face_image=None, # New parameter progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, image=face_image, # Pass the face image if provided ).images[0] return image, seed examples = [ "Astronaut in a classroom, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") # Add face image input face_image = gr.Image( label="Reference Face Image (Optional)", type="numpy", visible=True ) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=10, value=2, # Replace with defaults that work for your model ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, face_image, # Add face image to inputs ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()