File size: 7,306 Bytes
6bc94ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from pathlib import Path
import numpy as np
from os.path import exists

import torch

from encoder.data_objects import DataLoader, Train_Dataset, Dev_Dataset
from encoder.model import SpeakerEncoder
from encoder.params_model import *
from encoder.visualizations import Visualizations
from utils.profiler import Profiler


def sync(device: torch.device):
    # For correct profiling (cuda operations are async)
    if device.type == "cuda":
        torch.cuda.synchronize(device)

def update_lr(optimizer, lr):
    for param_group in optimizer.param_groups:
        param_group["lr"] = lr


def train(run_id: str, clean_data_root: Path, models_dir: Path, umap_every: int, save_every: int,
          backup_every: int, vis_every: int, force_restart: bool, visdom_server: str,
          no_visdom: bool):
    # Create a dataset and a dataloader
    train_dataset = Train_Dataset(clean_data_root.joinpath("train"))
    dev_dataset = Dev_Dataset(clean_data_root.joinpath("dev"))
    train_loader = DataLoader(
        train_dataset,
        speakers_per_batch,
        utterances_per_speaker,
        shuffle=True,
        num_workers=8,
        pin_memory=True
    )
    dev_batch = len(dev_dataset)
    dev_loader = DataLoader(
        dev_dataset,
        dev_batch,
        utterances_per_speaker,
        shuffle=False,
        num_workers=2,
        pin_memory=True
    )
    

    # Setup the device on which to run the forward pass and the loss. These can be different,
    # because the forward pass is faster on the GPU whereas the loss is often (depending on your
    # hyperparameters) faster on the CPU.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # FIXME: currently, the gradient is None if loss_device is cuda
    
    # loss_device = torch.device("cpu")
    loss_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  ####modified####

    # Create the model and the optimizer
    model = SpeakerEncoder(device, loss_device)
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate_init)
    current_lr = learning_rate_init
    init_step = 1

    # Configure file path for the model
    model_dir = models_dir / run_id
    model_dir.mkdir(exist_ok=True, parents=True)
    state_fpath = model_dir / "encoder.pt"

    # Load any existing model
    if not force_restart:
        if state_fpath.exists():
            print("Found existing model \"%s\", loading it and resuming training." % run_id)
            checkpoint = torch.load(state_fpath)
            init_step = checkpoint["step"]
            print(f"Resuming training from step {init_step}")
            model.load_state_dict(checkpoint["model_state"])
            optimizer.load_state_dict(checkpoint["optimizer_state"])
            optimizer.param_groups[0]["lr"] = learning_rate_init
        else:
            print("No model \"%s\" found, starting training from scratch." % run_id)
    else:
        print("Starting the training from scratch.")

    # Initialize the visualization environment
    vis = Visualizations(run_id, vis_every, server=visdom_server, disabled=no_visdom)
    vis.log_dataset(train_dataset)
    vis.log_params()
    device_name = str(torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU")
    vis.log_implementation({"Device": device_name})
    
    best_eer_file_path = "encoder_loss/best_eer.npy"
    if not exists("encoder_loss"):
        import os
        os.mkdir("encoder_loss")
    best_eer = np.load(best_eer_file_path)[0] if exists(best_eer_file_path) else 1

    # Training loop
    profiler = Profiler(summarize_every=1000, disabled=False)
    for step, speaker_batch in enumerate(train_loader, init_step):
        model.train()
        profiler.tick("Blocking, waiting for batch (threaded)")
        # Data to GPU mem
        inputs = torch.from_numpy(speaker_batch.data).to(device)
        sync(device)
        profiler.tick("Data to %s" % device)

        # Forward pass
        embeds = model(inputs)
        sync(device)
        profiler.tick("Forward pass")

        embeds_loss = embeds.view((speakers_per_batch, utterances_per_speaker, -1)).to(loss_device)
        loss, eer = model.loss(embeds_loss)
        sync(loss_device)
        profiler.tick("Loss")

        # Backward pass
        model.zero_grad()  # Sets gradients of all model parameters to zero
        loss.backward()  # Calc gradients of all model parameters
        profiler.tick("Backward pass")
        model.do_gradient_ops()
        optimizer.step()  # do gradient descent of all model parameters
        profiler.tick("Parameter update")

        # Update visualizations
        # learning_rate = optimizer.param_groups[0]["lr"]

        # Overwrite the latest version of the model
        if save_every != 0 and step % save_every == 0:
            current_lr *= 0.995
            update_lr(optimizer, current_lr)
            dev_loss, dev_eer, dev_embeds = validate(dev_loader, model, dev_batch, device, loss_device)
            sync(device)
            sync(loss_device)
            profiler.tick("validate")
            vis.update(loss.item(), eer, step, dev_loss, dev_eer)
            if dev_eer < best_eer:
                best_eer = dev_eer
                np.save(best_eer_file_path, np.array([best_eer]))
                print("Saving the model (step %d)" % step)
                torch.save({
                    "step": step + 1,
                    "model_state": model.state_dict(),
                    "optimizer_state": optimizer.state_dict(),
                }, state_fpath)
        else:
            vis.update(loss.item(), eer, step)

        # Draw projections and save them to the backup folder
        if umap_every != 0 and step % umap_every == 0:
            print("Drawing and saving projections (step %d)" % step)
            projection_fpath = model_dir / f"umap_{step:06d}.png"
            dev_projection_fpath = model_dir / f"dev_umap_{step:06d}.png"
            embeds = embeds.detach().cpu().numpy()
            dev_embeds = dev_embeds.detach().cpu().numpy()
            vis.draw_projections(embeds, dev_embeds, utterances_per_speaker, step, projection_fpath, dev_projection_fpath)
            vis.save()

        # # Make a backup
        # if backup_every != 0 and step % backup_every == 0:
        #     print("Making a backup (step %d)" % step)
        #     backup_fpath = model_dir / f"encoder_{step:06d}.bak"
        #     torch.save({
        #         "step": step + 1,
        #         "model_state": model.state_dict(),
        #         "optimizer_state": optimizer.state_dict(),
        #     }, backup_fpath)

        profiler.tick("Extras (visualizations, saving)")


def validate(dev_loader: DataLoader, model: SpeakerEncoder, dev_batch, device, loss_device):
    model.eval()
    losses = []
    eers = []
    with torch.no_grad():
        for step, speaker_batch in enumerate(dev_loader, 1):
            frames = torch.from_numpy(speaker_batch.data).to(device)
            embeds = model.forward(frames)
            embeds_loss = embeds.view((dev_batch, utterances_per_speaker, -1)).to(loss_device)
            loss, eer = model.loss(embeds_loss)
            losses.append(loss.item())
            eers.append(eer)
        return sum(losses) / len(losses), sum(eers) / len(eers), embeds.detach()