Spaces:
Runtime error
Runtime error
File size: 8,225 Bytes
6bc94ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import time
from pathlib import Path
from os.path import exists
import numpy as np
import torch
import torch.nn.functional as F
from torch import no_grad, optim
from torch.utils.data import DataLoader
import vocoder.hparams as hp
from vocoder.display import stream, simple_table
from vocoder.distribution import discretized_mix_logistic_loss
from vocoder.gen_wavernn import gen_devset
from vocoder.models.fatchord_version import WaveRNN
from vocoder.vocoder_dataset import VocoderDataset, collate_vocoder
from vocoder.utils import ValueWindow
from utils.profiler import Profiler
def train(run_id: str, syn_dir: Path, voc_dir: Path, models_dir: Path, ground_truth: bool, save_every: int,
backup_every: int, force_restart: bool, use_tb: bool):
if use_tb:
print("Use Tensorboard")
import tensorflow as tf
import datetime
# Hide GPU from visible devices
log_dir = f"log/vc/vocoder/tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_summary_writer = tf.summary.create_file_writer(log_dir)
# Check to make sure the hop length is correctly factorised
train_syn_dir = syn_dir.joinpath("train")
train_voc_dir = voc_dir.joinpath("train")
dev_syn_dir = syn_dir.joinpath("dev")
dev_voc_dir = voc_dir.joinpath("dev")
assert np.cumprod(hp.voc_upsample_factors)[-1] == hp.hop_length
# Instantiate the model
print("Initializing the model...")
model = WaveRNN(
rnn_dims=hp.voc_rnn_dims,
fc_dims=hp.voc_fc_dims,
bits=hp.bits,
pad=hp.voc_pad,
upsample_factors=hp.voc_upsample_factors,
feat_dims=hp.num_mels,
compute_dims=hp.voc_compute_dims,
res_out_dims=hp.voc_res_out_dims,
res_blocks=hp.voc_res_blocks,
hop_length=hp.hop_length,
sample_rate=hp.sample_rate,
mode=hp.voc_mode
)
if torch.cuda.is_available():
model = model.cuda()
# Initialize the optimizer
optimizer = optim.Adam(model.parameters())
for p in optimizer.param_groups:
p["lr"] = hp.voc_lr
loss_func = F.cross_entropy if model.mode == "RAW" else discretized_mix_logistic_loss
train_loss_window = ValueWindow(100)
# Load the weights
model_dir = models_dir / run_id
model_dir.mkdir(exist_ok=True)
weights_fpath = model_dir / "vocoder.pt"
# train_loss_file_path = "vocoder_loss/vocoder_train_loss.npy"
# dev_loss_file_path = "vocoder_loss/vocoder_dev_loss.npy"
# if not exists("vocoder_loss"):
# import os
# os.mkdir("vocoder_loss")
if force_restart or not weights_fpath.exists():
print("\nStarting the training of WaveRNN from scratch\n")
model.save(weights_fpath, optimizer)
# losses = []
# dev_losses = []
else:
print("\nLoading weights at %s" % weights_fpath)
model.load(weights_fpath, optimizer)
print("WaveRNN weights loaded from step %d" % model.step)
# losses = list(np.load(train_loss_file_path)) if exists(train_loss_file_path) else []
# dev_losses = list(np.load(dev_loss_file_path)) if exists(dev_loss_file_path) else []
# Initialize the dataset
train_metadata_fpath = train_syn_dir.joinpath("train.txt") if ground_truth else \
train_voc_dir.joinpath("synthesized.txt")
train_mel_dir = train_syn_dir.joinpath("mels") if ground_truth else train_voc_dir.joinpath("mels_gta")
train_wav_dir = train_syn_dir.joinpath("audio")
train_dataset = VocoderDataset(train_metadata_fpath, train_mel_dir, train_wav_dir)
dev_metadata_fpath = dev_syn_dir.joinpath("dev.txt") if ground_truth else \
dev_voc_dir.joinpath("synthesized.txt")
dev_mel_dir = dev_syn_dir.joinpath("mels") if ground_truth else dev_voc_dir.joinpath("mels_gta")
dev_wav_dir = dev_syn_dir.joinpath("audio")
dev_dataset = VocoderDataset(dev_metadata_fpath, dev_mel_dir, dev_wav_dir)
train_dataloader = DataLoader(train_dataset, hp.voc_batch_size, shuffle=True, num_workers=8, collate_fn=collate_vocoder, pin_memory=True)
dev_dataloader = DataLoader(dev_dataset, hp.voc_batch_size, shuffle=True, num_workers=8, collate_fn=collate_vocoder, pin_memory=True)
dev_dataloader_ = DataLoader(dev_dataset, 1, shuffle=True)
# Begin the training
simple_table([('Batch size', hp.voc_batch_size),
('LR', hp.voc_lr),
('Sequence Len', hp.voc_seq_len)])
# best_loss_file_path = "vocoder_loss/best_loss.npy"
# best_loss = np.load(best_loss_file_path)[0] if exists(best_loss_file_path) else 1000
# profiler = Profiler(summarize_every=10, disabled=False)
for epoch in range(1, 3500):
start = time.time()
for i, (x, y, m) in enumerate(train_dataloader, 1):
model.train()
# profiler.tick("Blocking, waiting for batch (threaded)")
if torch.cuda.is_available():
x, m, y = x.cuda(), m.cuda(), y.cuda()
# profiler.tick("Data to cuda")
# Forward pass
y_hat = model(x, m)
if model.mode == 'RAW':
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
elif model.mode == 'MOL':
y = y.float()
y = y.unsqueeze(-1)
# profiler.tick("Forward pass")
# Backward pass
loss = loss_func(y_hat, y)
# profiler.tick("Loss")
optimizer.zero_grad()
loss.backward()
# profiler.tick("Backward pass")
optimizer.step()
# profiler.tick("Parameter update")
speed = i / (time.time() - start)
train_loss_window.append(loss.item())
step = model.get_step()
k = step // 1000
msg = f"| Epoch: {epoch} ({i}/{len(train_dataloader)}) | " \
f"Train Loss: {train_loss_window.average:.4f} | " \
f"{speed:.4f}steps/s | Step: {k}k | "
stream(msg)
if use_tb:
with train_summary_writer.as_default():
tf.summary.scalar('train_loss', train_loss_window.average, step=step)
torch.cuda.empty_cache()
if backup_every != 0 and step % backup_every == 0 :
model.checkpoint(model_dir, optimizer)
if save_every != 0 and step % save_every == 0 :
dev_loss = validate(dev_dataloader, model, loss_func)
msg = f"| Epoch: {epoch} ({i}/{len(train_dataloader)}) | " \
f"Train Loss: {train_loss_window.average:.4f} | Dev Loss: {dev_loss:.4f} | " \
f"{speed:.4f}steps/s | Step: {k}k | "
stream(msg)
if use_tb:
with train_summary_writer.as_default():
tf.summary.scalar('val_loss', dev_loss, step=step)
# losses.append(train_loss_window.average)
# np.save(train_loss_file_path, np.array(losses, dtype=float))
# dev_losses.append(dev_loss)
# np.save(dev_loss_file_path, np.array(dev_losses, dtype=float))
# if dev_loss < best_loss :
# best_loss = dev_loss
# np.save(best_loss_file_path, np.array([best_loss]))
model.save(weights_fpath, optimizer)
# profiler.tick("Extra saving")
# gen_devset(model, dev_dataloader_, hp.voc_gen_at_checkpoint, hp.voc_gen_batched,
# hp.voc_target, hp.voc_overlap, model_dir)
print("")
def validate(dataloader, model, loss_func):
model.eval()
losses = []
with no_grad():
for i, (x, y, m) in enumerate(dataloader, 1):
if torch.cuda.is_available():
x, m, y = x.cuda(), m.cuda(), y.cuda()
y_hat = model(x, m)
if model.mode == 'RAW':
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
elif model.mode == 'MOL':
y = y.float()
y = y.unsqueeze(-1)
loss = loss_func(y_hat, y).item()
losses.append(loss)
torch.cuda.empty_cache()
return sum(losses) / len(losses) |