CelebChat / rtvc /toolbox /__init__.py
lhzstar
initial commits
6bc94ac
raw
history blame
16.1 kB
import sys
import traceback
from pathlib import Path
from time import perf_counter as timer
import re
import numpy as np
import torch
import soundfile as sf
import librosa
import spacy
import encoder
from encoder import inference as encoder_infer
from synthesizer.inference import Synthesizer_infer
from synthesizer.utils.cleaners import add_breaks, english_cleaners_predict
from vocoder.display import save_attention_multiple, save_spectrogram, save_stop_tokens
from synthesizer.hparams import syn_hparams
from toolbox.ui import UI
from toolbox.utterance import Utterance
from vocoder import inference as vocoder
from speed_changer.fixSpeed import *
import time
# Use this directory structure for your datasets, or modify it to fit your needs
recognized_datasets = [
"LibriSpeech/dev-clean",
"LibriSpeech/dev-other",
"LibriSpeech/test-clean",
"LibriSpeech/test-other",
"LibriSpeech/train-clean-100",
"LibriSpeech/train-clean-360",
"LibriSpeech/train-other-500",
"LibriTTS/dev-clean",
"LibriTTS/dev-other",
"LibriTTS/test-clean",
"LibriTTS/test-other",
"LibriTTS/train-clean-100",
"LibriTTS/train-clean-360",
"LibriTTS/train-other-500",
"LJSpeech-1.1",
"VoxCeleb1/wav",
"VoxCeleb1/test_wav",
"VoxCeleb2/dev/aac",
"VoxCeleb2/test/aac",
"VCTK-Corpus/wav48",
]
# Maximum of generated wavs to keep on memory
MAX_WAVS = 15
class Toolbox:
def __init__(self, run_id: str, datasets_root: Path, models_dir: Path, seed: int=None):
sys.excepthook = self.excepthook
self.datasets_root = datasets_root
self.utterances = set()
self.current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav
self.synthesizer = None # type: Synthesizer_infer
self.current_wav = None
self.waves_list = []
self.waves_count = 0
self.waves_namelist = []
self.start_generate_time = None
self.nlp = spacy.load('en_core_web_sm')
if not os.path.exists("toolbox_results"):
os.mkdir("toolbox_results")
# Check for webrtcvad (enables removal of silences in vocoder output)
try:
import webrtcvad
self.trim_silences = True
except:
self.trim_silences = False
# Initialize the events and the interface
self.ui = UI()
self.reset_ui(run_id, models_dir, seed)
self.setup_events()
self.ui.start()
def excepthook(self, exc_type, exc_value, exc_tb):
traceback.print_exception(exc_type, exc_value, exc_tb)
self.ui.log("Exception: %s" % exc_value)
def setup_events(self):
# Dataset, speaker and utterance selection
self.ui.browser_load_button.clicked.connect(lambda: self.load_from_browser())
random_func = lambda level: lambda: self.ui.populate_browser(self.datasets_root,
recognized_datasets,
level)
self.ui.random_dataset_button.clicked.connect(random_func(0))
self.ui.random_speaker_button.clicked.connect(random_func(1))
self.ui.random_utterance_button.clicked.connect(random_func(2))
self.ui.dataset_box.currentIndexChanged.connect(random_func(1))
self.ui.speaker_box.currentIndexChanged.connect(random_func(2))
# Model selection
self.ui.encoder_box.currentIndexChanged.connect(self.init_encoder)
def func():
self.synthesizer = None
self.ui.synthesizer_box.currentIndexChanged.connect(func)
self.ui.vocoder_box.currentIndexChanged.connect(self.init_vocoder)
# Utterance selection
func = lambda: self.load_from_browser(self.ui.browse_file())
self.ui.browser_browse_button.clicked.connect(func)
func = lambda: self.ui.draw_utterance(self.ui.selected_utterance, "current")
self.ui.utterance_history.currentIndexChanged.connect(func)
func = lambda: self.ui.play(self.ui.selected_utterance.wav, Synthesizer_infer.sample_rate)
self.ui.play_button.clicked.connect(func)
self.ui.stop_button.clicked.connect(self.ui.stop)
self.ui.record_button.clicked.connect(self.record)
#Audio
self.ui.setup_audio_devices(Synthesizer_infer.sample_rate)
#Wav playback & save
func = lambda: self.replay_last_wav()
self.ui.replay_wav_button.clicked.connect(func)
func = lambda: self.export_current_wave()
self.ui.export_wav_button.clicked.connect(func)
self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav)
# Generation
func = lambda: self.synthesize() or self.vocode()
self.ui.generate_button.clicked.connect(func)
self.ui.synthesize_button.clicked.connect(self.synthesize)
self.ui.vocode_button.clicked.connect(self.vocode)
self.ui.random_seed_checkbox.clicked.connect(self.update_seed_textbox)
# UMAP legend
self.ui.clear_button.clicked.connect(self.clear_utterances)
def set_current_wav(self, index):
self.current_wav = self.waves_list[index]
def export_current_wave(self):
self.ui.save_audio_file(self.current_wav, Synthesizer_infer.sample_rate)
def replay_last_wav(self):
self.ui.play(self.current_wav, Synthesizer_infer.sample_rate)
def reset_ui(self, run_id: str, models_dir: Path, seed: int=None):
self.ui.populate_browser(self.datasets_root, recognized_datasets, 0, True)
self.ui.populate_models(run_id, models_dir)
self.ui.populate_gen_options(seed, self.trim_silences)
def load_from_browser(self, fpath=None):
if fpath is None:
fpath = Path(self.datasets_root,
self.ui.current_dataset_name,
self.ui.current_speaker_name,
self.ui.current_utterance_name)
name = str(fpath.relative_to(self.datasets_root))
speaker_name = self.ui.current_dataset_name + '_' + self.ui.current_speaker_name
# Select the next utterance
if self.ui.auto_next_checkbox.isChecked():
self.ui.browser_select_next()
elif fpath == "":
return
else:
name = fpath.name
speaker_name = fpath.parent.name
# Get the wav from the disk. We take the wav with the vocoder/synthesizer format for
# playback, so as to have a fair comparison with the generated audio
wav = Synthesizer_infer.load_preprocess_wav(fpath)
self.ui.log("Loaded %s" % name)
self.add_real_utterance(wav, name, speaker_name)
def record(self):
wav = self.ui.record_one(encoder_infer.sampling_rate, 5)
if wav is None:
return
self.ui.play(wav, encoder_infer.sampling_rate)
speaker_name = "user01"
name = speaker_name + "_rec_%05d" % np.random.randint(100000)
self.add_real_utterance(wav, name, speaker_name)
def add_real_utterance(self, wav, name, speaker_name):
# Compute the mel spectrogram
spec = Synthesizer_infer.make_spectrogram(wav)
self.ui.draw_spec(spec, "current")
path_ori = os.getcwd()
file_ori = 'temp.wav'
fpath = os.path.join(path_ori, file_ori)
sf.write(fpath, wav, samplerate=encoder.params_data.sampling_rate)
# adjust the speed
self.wav_ori_info = AudioAnalysis(path_ori, file_ori)
DelFile(path_ori, '.TextGrid')
os.remove(fpath)
# Compute the embedding
if not encoder_infer.is_loaded():
self.init_encoder()
encoder_wav = encoder_infer.preprocess_wav(wav)
embed, partial_embeds, _ = encoder_infer.embed_utterance(encoder_wav, return_partials=True)
embed[embed < encoder.params_data.set_zero_thres]=0 # 噪声值置零
# Add the utterance
utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, False)
self.utterances.add(utterance)
self.ui.register_utterance(utterance)
# Plot it
self.ui.draw_embed(embed, name, "current")
self.ui.draw_umap_projections(self.utterances)
self.ui.wav_ori_fig.savefig(f"toolbox_results/{name}_info.png", dpi=500)
if len(self.utterances) >= self.ui.min_umap_points:
self.ui.umap_fig.savefig(f"toolbox_results/umap_{len(self.utterances)}.png", dpi=500)
def clear_utterances(self):
self.utterances.clear()
self.ui.draw_umap_projections(self.utterances)
def synthesize(self):
self.start_generate_time = time.time()
self.ui.log("Generating the mel spectrogram...")
self.ui.set_loading(1)
# Update the synthesizer random seed
if self.ui.random_seed_checkbox.isChecked():
seed = int(self.ui.seed_textbox.text())
self.ui.populate_gen_options(seed, self.trim_silences)
else:
seed = None
if seed is not None:
torch.manual_seed(seed)
# Synthesize the spectrogram
if self.synthesizer is None or seed is not None:
self.init_synthesizer()
embed = self.ui.selected_utterance.embed
def preprocess_text(text):
text = add_breaks(text)
text = english_cleaners_predict(text)
texts = [i.text.strip() for i in self.nlp(text).sents] # split paragraph to sentences
return texts
texts = preprocess_text(self.ui.text_prompt.toPlainText())
print(f"the list of inputs texts:\n{texts}")
embeds = [embed] * len(texts)
specs, alignments, stop_tokens = self.synthesizer.synthesize_spectrograms(texts, embeds, require_visualization=True)
breaks = [spec.shape[1] for spec in specs]
spec = np.concatenate(specs, axis=1)
save_attention_multiple(alignments, "toolbox_results/attention")
save_stop_tokens(stop_tokens, "toolbox_results/stop_tokens")
self.ui.draw_spec(spec, "generated")
self.current_generated = (self.ui.selected_utterance.speaker_name, spec, breaks, None)
self.ui.set_loading(0)
def vocode(self):
speaker_name, spec, breaks, _ = self.current_generated
assert spec is not None
# Initialize the vocoder model and make it determinstic, if user provides a seed
if self.ui.random_seed_checkbox.isChecked():
seed = int(self.ui.seed_textbox.text())
self.ui.populate_gen_options(seed, self.trim_silences)
else:
seed = None
if seed is not None:
torch.manual_seed(seed)
# Synthesize the waveform
if not vocoder.is_loaded() or seed is not None:
self.init_vocoder()
def vocoder_progress(i, seq_len, b_size, gen_rate):
real_time_factor = (gen_rate / Synthesizer_infer.sample_rate) * 1000
line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \
% (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor)
self.ui.log(line, "overwrite")
self.ui.set_loading(i, seq_len)
if self.ui.current_vocoder_fpath is not None and not self.ui.griffin_lim_checkbox.isChecked():
self.ui.log("")
wav = vocoder.infer_waveform(spec, target=vocoder.hp.voc_target, overlap=vocoder.hp.voc_overlap, crossfade=vocoder.hp.is_crossfade, progress_callback=vocoder_progress)
else:
self.ui.log("Waveform generation with Griffin-Lim... ")
wav = Synthesizer_infer.griffin_lim(spec)
self.ui.set_loading(0)
self.ui.log(" Done!", "append")
self.ui.log(f"Generate time: {time.time() - self.start_generate_time}s")
# Add breaks
b_ends = np.cumsum(np.array(breaks) * Synthesizer_infer.hparams.hop_size)
b_starts = np.concatenate(([0], b_ends[:-1]))
wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)]
breaks = [np.zeros(int(0.15 * Synthesizer_infer.sample_rate))] * len(breaks)
wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])
# Trim excessive silences
if self.ui.trim_silences_checkbox.isChecked():
wav = encoder_infer.preprocess_wav(wav)
path_ori = os.getcwd()
file_ori = 'temp.wav'
filename = os.path.join(path_ori, file_ori)
sf.write(filename, wav.astype(np.float32), syn_hparams.sample_rate)
self.ui.log("\nSaved output (haven't change speed) as %s\n\n" % filename)
# Fix Speed(generate new audio)
fix_file, speed_factor = work(*self.wav_ori_info, filename)
self.ui.log(f"\nSaved output (fixed speed) as {fix_file}\n\n")
wav, _ = librosa.load(fix_file, syn_hparams.sample_rate)
os.remove(fix_file)
# Play it
wav = wav / np.abs(wav).max() * 4
self.ui.play(wav, Synthesizer_infer.sample_rate)
# Name it (history displayed in combobox)
# TODO better naming for the combobox items?
wav_name = str(self.waves_count + 1)
#Update waves combobox
self.waves_count += 1
if self.waves_count > MAX_WAVS:
self.waves_list.pop()
self.waves_namelist.pop()
self.waves_list.insert(0, wav)
self.waves_namelist.insert(0, wav_name)
self.ui.waves_cb.disconnect()
self.ui.waves_cb_model.setStringList(self.waves_namelist)
self.ui.waves_cb.setCurrentIndex(0)
self.ui.waves_cb.currentIndexChanged.connect(self.set_current_wav)
# Update current wav
self.set_current_wav(0)
#Enable replay and save buttons:
self.ui.replay_wav_button.setDisabled(False)
self.ui.export_wav_button.setDisabled(False)
# Compute the embedding
# TODO: this is problematic with different sampling rates, gotta fix it
if not encoder_infer.is_loaded():
self.init_encoder()
encoder_wav = encoder_infer.preprocess_wav(wav)
embed, partial_embeds, _ = encoder_infer.embed_utterance(encoder_wav, return_partials=True)
# Add the utterance
name = speaker_name + "_gen_%05d_" % np.random.randint(100000) + str(speed_factor)
utterance = Utterance(name, speaker_name, wav, spec, embed, partial_embeds, True)
self.utterances.add(utterance)
# Plot it
self.ui.draw_embed(embed, name, "generated")
self.ui.draw_umap_projections(self.utterances)
self.ui.wav_gen_fig.savefig(f"toolbox_results/{name}_info.png", dpi=500)
if len(self.utterances) >= self.ui.min_umap_points:
self.ui.umap_fig.savefig(f"toolbox_results/umap_{len(self.utterances)}.png", dpi=500)
def init_encoder(self):
model_fpath = self.ui.current_encoder_fpath
self.ui.log("Loading the encoder %s... " % model_fpath)
self.ui.set_loading(1)
start = timer()
encoder_infer.load_model(model_fpath)
self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
self.ui.set_loading(0)
def init_synthesizer(self):
model_fpath = self.ui.current_synthesizer_fpath
self.ui.log("Loading the synthesizer %s... " % model_fpath)
self.ui.set_loading(1)
start = timer()
self.synthesizer = Synthesizer_infer(model_fpath)
self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
self.ui.set_loading(0)
def init_vocoder(self):
model_fpath = self.ui.current_vocoder_fpath
# Case of Griffin-lim
if model_fpath is None:
return
self.ui.log("Loading the vocoder %s... " % model_fpath)
self.ui.set_loading(1)
start = timer()
vocoder.load_model(model_fpath)
self.ui.log("Done (%dms)." % int(1000 * (timer() - start)), "append")
self.ui.set_loading(0)
def update_seed_textbox(self):
self.ui.update_seed_textbox()