Spaces:
Running
Running
import gradio as gr | |
import os | |
os.system("mim install mmengine") | |
os.system('mim install "mmcv>=2.0.0"') | |
os.system("mim install mmdet") | |
import cv2 | |
from PIL import Image | |
import numpy as np | |
from animeinsseg import AnimeInsSeg, AnimeInstances | |
from animeinsseg.anime_instances import get_color | |
if not os.path.exists("models"): | |
os.mkdir("models") | |
os.system("huggingface-cli lfs-enable-largefiles .") | |
os.system("git clone https://huggingface.co/dreMaz/AnimeInstanceSegmentation models/AnimeInstanceSegmentation") | |
ckpt = r'models/AnimeInstanceSegmentation/rtmdetl_e60.ckpt' | |
mask_thres = 0.3 | |
instance_thres = 0.3 | |
refine_kwargs = {'refine_method': 'refinenet_isnet'} # set to None if not using refinenet | |
# refine_kwargs = None | |
net = AnimeInsSeg(ckpt, mask_thr=mask_thres, refine_kwargs=refine_kwargs) | |
def fn(image): | |
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
instances: AnimeInstances = net.infer( | |
img, | |
output_type='numpy', | |
pred_score_thr=instance_thres | |
) | |
drawed = img.copy() | |
im_h, im_w = img.shape[:2] | |
# instances.bboxes, instances.masks will be None, None if no obj is detected | |
if instances.bboxes is None: | |
return Image.fromarray(drawed[..., ::-1]) | |
for ii, (xywh, mask) in enumerate(zip(instances.bboxes, instances.masks)): | |
color = get_color(ii) | |
mask_alpha = 0.5 | |
linewidth = max(round(sum(img.shape) / 2 * 0.003), 2) | |
# draw bbox | |
p1, p2 = (int(xywh[0]), int(xywh[1])), (int(xywh[2] + xywh[0]), int(xywh[3] + xywh[1])) | |
cv2.rectangle(drawed, p1, p2, color, thickness=linewidth, lineType=cv2.LINE_AA) | |
# draw mask | |
p = mask.astype(np.float32) | |
blend_mask = np.full((im_h, im_w, 3), color, dtype=np.float32) | |
alpha_msk = (mask_alpha * p)[..., None] | |
alpha_ori = 1 - alpha_msk | |
drawed = drawed * alpha_ori + alpha_msk * blend_mask | |
drawed = drawed.astype(np.uint8) | |
return Image.fromarray(drawed[..., ::-1]) | |
iface = gr.Interface( | |
# design titles and text descriptions | |
title="Anime Subject Instance Segmentation", | |
description="Segment image subjects with the proposed model in the paper [*Instance-guided Cartoon Editing with a Large-scale Dataset*](https://cartoonsegmentation.github.io/).", | |
fn=fn, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.Image(type="pil"), | |
examples=["1562990.jpg", "612989.jpg", "sample_3.jpg"] | |
) | |
iface.launch() | |