Spaces:
Runtime error
Runtime error
File size: 1,439 Bytes
4c51699 1f936e9 4c51699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit as st
import torch
import numpy as np
import json
import typing as tp
import torch.nn.functional as F
from torch import Tensor
from datasets import ClassLabel
import transformers
from transformers import BertForSequenceClassification
from transformers import BertForSequenceClassification, AutoTokenizer
st.markdown("## Portuguese European and Brazilian dialect classifier")
st.markdown("[You can see the difference between dialects here](https://en.wikipedia.org/wiki/Portuguese_language#Writing_system)")
text = st.text_input('## Text:')
tokenizer = AutoTokenizer.from_pretrained('adalbertojunior/distilbert-portuguese-cased', do_lower_case=False)
classes = ['pt', 'pt_br']
class_label = ClassLabel(names=classes)
@st.cache
def get_model():
return BertForSequenceClassification.from_pretrained(
'./pt_br_model',
num_labels = 2,
output_attentions = False,
output_hidden_states = False,
)
model = get_model()
@torch.inference_mode()
def print_results():
input_tensor = tokenizer(text, padding=True, truncation=True, max_length=256, add_special_tokens=True, return_tensors="pt")
logits = model(**input_tensor).logits
probabilities = F.softmax(logits, dim=1).flatten().tolist()
maxidx = np.argmax(probabilities)
results = f"### {classes[maxidx]} score: {probabilities[maxidx]*100}%"
st.markdown('## Results:')
st.markdown(results)
if text:
print_results()
|