Spaces:
Runtime error
Runtime error
import torch | |
import json | |
import typing as tp | |
import torch.nn.functional as F | |
from torch import Tensor | |
from datasets import ClassLabel | |
import transformers | |
from transformers import BertForSequenceClassification | |
from transformers import BertForSequenceClassification, AutoTokenizer | |
import numpy as np | |
tokenizer = AutoTokenizer.from_pretrained('adalbertojunior/distilbert-portuguese-cased', do_lower_case=False) | |
classes = ['pt','pt_br'] | |
class_label = ClassLabel(names=classes) | |
def get_model(): | |
return BertForSequenceClassification.from_pretrained( | |
'./pt_br_model', | |
num_labels = 2, | |
output_attentions = False, | |
output_hidden_states = False, | |
) | |
model = get_model() | |
text = 'hello' | |
input_tensor = tokenizer(text, padding=True, truncation=True, max_length=256, add_special_tokens=True, return_tensors="pt") | |
logits=model(**input_tensor).logits | |
probabilities = F.softmax(logits, dim=1).flatten().tolist() | |
maxidx = np.argmax(probabilities) | |
print(classes[maxidx], probabilities[maxidx]) |