Spaces:
Runtime error
Runtime error
Li Zhaoxu
commited on
Commit
·
8216227
1
Parent(s):
9e21376
update
Browse files- app.py +558 -77
- appv1.py +153 -0
- eval_configs/tinygptv_stage4_eval.yaml +2 -2
app.py
CHANGED
@@ -1,15 +1,24 @@
|
|
1 |
import argparse
|
2 |
import os
|
3 |
import random
|
|
|
|
|
|
|
|
|
4 |
|
5 |
import numpy as np
|
|
|
6 |
import torch
|
|
|
7 |
import gradio as gr
|
|
|
|
|
8 |
import torch.backends.cudnn as cudnn
|
|
|
9 |
from minigpt4.common.config import Config
|
10 |
-
|
11 |
from minigpt4.common.registry import registry
|
12 |
-
from minigpt4.conversation.conversation import
|
13 |
|
14 |
# imports modules for registration
|
15 |
from minigpt4.datasets.builders import *
|
@@ -18,136 +27,608 @@ from minigpt4.processors import *
|
|
18 |
from minigpt4.runners import *
|
19 |
from minigpt4.tasks import *
|
20 |
|
|
|
21 |
def parse_args():
|
22 |
parser = argparse.ArgumentParser(description="Demo")
|
23 |
-
parser.add_argument("--cfg-path",
|
|
|
|
|
24 |
parser.add_argument(
|
25 |
"--options",
|
26 |
nargs="+",
|
27 |
help="override some settings in the used config, the key-value pair "
|
28 |
-
|
29 |
-
|
30 |
)
|
31 |
args = parser.parse_args()
|
32 |
return args
|
33 |
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
random.seed(seed)
|
39 |
-
np.random.seed(seed)
|
40 |
-
torch.manual_seed(seed)
|
41 |
-
|
42 |
-
cudnn.benchmark = False
|
43 |
-
cudnn.deterministic = True
|
44 |
-
# ========================================
|
45 |
-
# Model Initialization
|
46 |
-
# ========================================
|
47 |
-
|
48 |
-
SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue.
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
|
53 |
-
|
54 |
-
Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io).
|
55 |
-
'''
|
56 |
|
57 |
print('Initializing Chat')
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
model_config = cfg.model_cfg
|
|
|
61 |
model_cls = registry.get_model_class(model_config.arch)
|
62 |
-
model = model_cls.from_config(model_config).to(
|
|
|
63 |
|
64 |
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
|
65 |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
66 |
-
chat = Chat(model, vis_processor)
|
67 |
-
print('Initialization Finished')
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def gradio_reset(chat_state, img_list):
|
74 |
if chat_state is not None:
|
75 |
chat_state.messages = []
|
76 |
if img_list is not None:
|
77 |
img_list = []
|
78 |
-
return None, gr.update(value=None, interactive=True), gr.update(placeholder='
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
if gr_img is None:
|
82 |
-
return None, None, gr.update(interactive=True), chat_state, None
|
83 |
-
chat_state = CONV_VISION.copy()
|
84 |
-
img_list = []
|
85 |
-
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
86 |
|
87 |
-
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
|
88 |
|
89 |
-
def gradio_ask(user_message, chatbot, chat_state):
|
90 |
if len(user_message) == 0:
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
chat.ask(user_message, chat_state)
|
|
|
93 |
chatbot = chatbot + [[user_message, None]]
|
94 |
-
return '', chatbot, chat_state
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
99 |
chatbot[-1][1] = llm_message
|
100 |
-
return chatbot, chat_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://github.com/DLYuanGod/TinyGPT-V'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://arxiv.org/abs/2312.16862'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
|
105 |
"""
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
|
|
109 |
with gr.Blocks() as demo:
|
110 |
gr.Markdown(title)
|
111 |
-
|
112 |
-
gr.Markdown(description)
|
113 |
gr.Markdown(article)
|
114 |
|
115 |
with gr.Row():
|
116 |
with gr.Column(scale=0.5):
|
117 |
-
image = gr.Image(type="pil")
|
118 |
-
|
119 |
-
clear = gr.Button("Restart")
|
120 |
-
|
121 |
-
num_beams = gr.Slider(
|
122 |
-
minimum=1,
|
123 |
-
maximum=5,
|
124 |
-
value=1,
|
125 |
-
step=1,
|
126 |
-
interactive=True,
|
127 |
-
label="beam search numbers)",
|
128 |
-
)
|
129 |
-
|
130 |
temperature = gr.Slider(
|
131 |
minimum=0.1,
|
132 |
-
maximum=
|
133 |
-
value=
|
134 |
step=0.1,
|
135 |
interactive=True,
|
136 |
label="Temperature",
|
137 |
)
|
138 |
-
|
|
|
|
|
|
|
139 |
|
140 |
with gr.Column():
|
141 |
-
chat_state = gr.State()
|
142 |
-
img_list = gr.State()
|
143 |
chatbot = gr.Chatbot(label='TinyGPT-V')
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
)
|
151 |
-
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)
|
152 |
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import argparse
|
2 |
import os
|
3 |
import random
|
4 |
+
from collections import defaultdict
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import re
|
8 |
|
9 |
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
import torch
|
12 |
+
import html
|
13 |
import gradio as gr
|
14 |
+
|
15 |
+
import torchvision.transforms as T
|
16 |
import torch.backends.cudnn as cudnn
|
17 |
+
|
18 |
from minigpt4.common.config import Config
|
19 |
+
|
20 |
from minigpt4.common.registry import registry
|
21 |
+
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, Chat
|
22 |
|
23 |
# imports modules for registration
|
24 |
from minigpt4.datasets.builders import *
|
|
|
27 |
from minigpt4.runners import *
|
28 |
from minigpt4.tasks import *
|
29 |
|
30 |
+
|
31 |
def parse_args():
|
32 |
parser = argparse.ArgumentParser(description="Demo")
|
33 |
+
parser.add_argument("--cfg-path", default='eval_configs/tinygptv_stage4_eval.yaml',
|
34 |
+
help="path to configuration file.")
|
35 |
+
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
|
36 |
parser.add_argument(
|
37 |
"--options",
|
38 |
nargs="+",
|
39 |
help="override some settings in the used config, the key-value pair "
|
40 |
+
"in xxx=yyy format will be merged into config file (deprecate), "
|
41 |
+
"change to --cfg-options instead.",
|
42 |
)
|
43 |
args = parser.parse_args()
|
44 |
return args
|
45 |
|
46 |
|
47 |
+
random.seed(42)
|
48 |
+
np.random.seed(42)
|
49 |
+
torch.manual_seed(42)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
cudnn.benchmark = False
|
52 |
+
cudnn.deterministic = True
|
|
|
|
|
|
|
|
|
53 |
|
54 |
print('Initializing Chat')
|
55 |
+
args = parse_args()
|
56 |
+
cfg = Config(args)
|
57 |
+
|
58 |
+
device = 'cuda:{}'.format(args.gpu_id)
|
59 |
|
60 |
model_config = cfg.model_cfg
|
61 |
+
model_config.device_8bit = args.gpu_id
|
62 |
model_cls = registry.get_model_class(model_config.arch)
|
63 |
+
model = model_cls.from_config(model_config).to(device)
|
64 |
+
bounding_box_size = 100
|
65 |
|
66 |
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
|
67 |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
|
|
|
|
68 |
|
69 |
+
model = model.eval()
|
70 |
+
|
71 |
+
CONV_VISION = Conversation(
|
72 |
+
system="",
|
73 |
+
roles=(r"<s>[INST] ", r" [/INST]"),
|
74 |
+
messages=[],
|
75 |
+
offset=2,
|
76 |
+
sep_style=SeparatorStyle.SINGLE,
|
77 |
+
sep="",
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
def extract_substrings(string):
|
82 |
+
# first check if there is no-finished bracket
|
83 |
+
index = string.rfind('}')
|
84 |
+
if index != -1:
|
85 |
+
string = string[:index + 1]
|
86 |
+
|
87 |
+
pattern = r'<p>(.*?)\}(?!<)'
|
88 |
+
matches = re.findall(pattern, string)
|
89 |
+
substrings = [match for match in matches]
|
90 |
+
|
91 |
+
return substrings
|
92 |
+
|
93 |
+
|
94 |
+
def is_overlapping(rect1, rect2):
|
95 |
+
x1, y1, x2, y2 = rect1
|
96 |
+
x3, y3, x4, y4 = rect2
|
97 |
+
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
98 |
+
|
99 |
+
|
100 |
+
def computeIoU(bbox1, bbox2):
|
101 |
+
x1, y1, x2, y2 = bbox1
|
102 |
+
x3, y3, x4, y4 = bbox2
|
103 |
+
intersection_x1 = max(x1, x3)
|
104 |
+
intersection_y1 = max(y1, y3)
|
105 |
+
intersection_x2 = min(x2, x4)
|
106 |
+
intersection_y2 = min(y2, y4)
|
107 |
+
intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1)
|
108 |
+
bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
109 |
+
bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1)
|
110 |
+
union_area = bbox1_area + bbox2_area - intersection_area
|
111 |
+
iou = intersection_area / union_area
|
112 |
+
return iou
|
113 |
+
|
114 |
+
|
115 |
+
def save_tmp_img(visual_img):
|
116 |
+
file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg"
|
117 |
+
file_path = "/tmp/gradio" + file_name
|
118 |
+
visual_img.save(file_path)
|
119 |
+
return file_path
|
120 |
+
|
121 |
+
|
122 |
+
def mask2bbox(mask):
|
123 |
+
if mask is None:
|
124 |
+
return ''
|
125 |
+
mask = mask.resize([100, 100], resample=Image.NEAREST)
|
126 |
+
mask = np.array(mask)[:, :, 0]
|
127 |
+
|
128 |
+
rows = np.any(mask, axis=1)
|
129 |
+
cols = np.any(mask, axis=0)
|
130 |
+
|
131 |
+
if rows.sum():
|
132 |
+
# Get the top, bottom, left, and right boundaries
|
133 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
134 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
135 |
+
bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax)
|
136 |
+
else:
|
137 |
+
bbox = ''
|
138 |
+
|
139 |
+
return bbox
|
140 |
+
|
141 |
+
|
142 |
+
def escape_markdown(text):
|
143 |
+
# List of Markdown special characters that need to be escaped
|
144 |
+
md_chars = ['<', '>']
|
145 |
+
|
146 |
+
# Escape each special character
|
147 |
+
for char in md_chars:
|
148 |
+
text = text.replace(char, '\\' + char)
|
149 |
+
|
150 |
+
return text
|
151 |
+
|
152 |
+
|
153 |
+
def reverse_escape(text):
|
154 |
+
md_chars = ['\\<', '\\>']
|
155 |
+
|
156 |
+
for char in md_chars:
|
157 |
+
text = text.replace(char, char[1:])
|
158 |
+
|
159 |
+
return text
|
160 |
+
|
161 |
+
|
162 |
+
colors = [
|
163 |
+
(255, 0, 0),
|
164 |
+
(0, 255, 0),
|
165 |
+
(0, 0, 255),
|
166 |
+
(210, 210, 0),
|
167 |
+
(255, 0, 255),
|
168 |
+
(0, 255, 255),
|
169 |
+
(114, 128, 250),
|
170 |
+
(0, 165, 255),
|
171 |
+
(0, 128, 0),
|
172 |
+
(144, 238, 144),
|
173 |
+
(238, 238, 175),
|
174 |
+
(255, 191, 0),
|
175 |
+
(0, 128, 0),
|
176 |
+
(226, 43, 138),
|
177 |
+
(255, 0, 255),
|
178 |
+
(0, 215, 255),
|
179 |
+
]
|
180 |
+
|
181 |
+
color_map = {
|
182 |
+
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for
|
183 |
+
color_id, color in enumerate(colors)
|
184 |
+
}
|
185 |
+
|
186 |
+
used_colors = colors
|
187 |
+
|
188 |
+
|
189 |
+
def visualize_all_bbox_together(image, generation):
|
190 |
+
if image is None:
|
191 |
+
return None, ''
|
192 |
+
|
193 |
+
generation = html.unescape(generation)
|
194 |
+
|
195 |
+
image_width, image_height = image.size
|
196 |
+
image = image.resize([500, int(500 / image_width * image_height)])
|
197 |
+
image_width, image_height = image.size
|
198 |
+
|
199 |
+
string_list = extract_substrings(generation)
|
200 |
+
if string_list: # it is grounding or detection
|
201 |
+
mode = 'all'
|
202 |
+
entities = defaultdict(list)
|
203 |
+
i = 0
|
204 |
+
j = 0
|
205 |
+
for string in string_list:
|
206 |
+
try:
|
207 |
+
obj, string = string.split('</p>')
|
208 |
+
except ValueError:
|
209 |
+
print('wrong string: ', string)
|
210 |
+
continue
|
211 |
+
bbox_list = string.split('<delim>')
|
212 |
+
flag = False
|
213 |
+
for bbox_string in bbox_list:
|
214 |
+
integers = re.findall(r'-?\d+', bbox_string)
|
215 |
+
if len(integers) == 4:
|
216 |
+
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
|
217 |
+
left = x0 / bounding_box_size * image_width
|
218 |
+
bottom = y0 / bounding_box_size * image_height
|
219 |
+
right = x1 / bounding_box_size * image_width
|
220 |
+
top = y1 / bounding_box_size * image_height
|
221 |
+
|
222 |
+
entities[obj].append([left, bottom, right, top])
|
223 |
+
|
224 |
+
j += 1
|
225 |
+
flag = True
|
226 |
+
if flag:
|
227 |
+
i += 1
|
228 |
+
else:
|
229 |
+
integers = re.findall(r'-?\d+', generation)
|
230 |
+
|
231 |
+
if len(integers) == 4: # it is refer
|
232 |
+
mode = 'single'
|
233 |
+
|
234 |
+
entities = list()
|
235 |
+
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
|
236 |
+
left = x0 / bounding_box_size * image_width
|
237 |
+
bottom = y0 / bounding_box_size * image_height
|
238 |
+
right = x1 / bounding_box_size * image_width
|
239 |
+
top = y1 / bounding_box_size * image_height
|
240 |
+
entities.append([left, bottom, right, top])
|
241 |
+
else:
|
242 |
+
# don't detect any valid bbox to visualize
|
243 |
+
return None, ''
|
244 |
+
|
245 |
+
if len(entities) == 0:
|
246 |
+
return None, ''
|
247 |
+
|
248 |
+
if isinstance(image, Image.Image):
|
249 |
+
image_h = image.height
|
250 |
+
image_w = image.width
|
251 |
+
image = np.array(image)
|
252 |
+
|
253 |
+
elif isinstance(image, str):
|
254 |
+
if os.path.exists(image):
|
255 |
+
pil_img = Image.open(image).convert("RGB")
|
256 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
257 |
+
image_h = pil_img.height
|
258 |
+
image_w = pil_img.width
|
259 |
+
else:
|
260 |
+
raise ValueError(f"invaild image path, {image}")
|
261 |
+
elif isinstance(image, torch.Tensor):
|
262 |
+
|
263 |
+
image_tensor = image.cpu()
|
264 |
+
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
|
265 |
+
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
|
266 |
+
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
|
267 |
+
pil_img = T.ToPILImage()(image_tensor)
|
268 |
+
image_h = pil_img.height
|
269 |
+
image_w = pil_img.width
|
270 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
271 |
+
else:
|
272 |
+
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
273 |
+
|
274 |
+
indices = list(range(len(entities)))
|
275 |
+
|
276 |
+
new_image = image.copy()
|
277 |
+
|
278 |
+
previous_bboxes = []
|
279 |
+
# size of text
|
280 |
+
text_size = 0.5
|
281 |
+
# thickness of text
|
282 |
+
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
|
283 |
+
box_line = 2
|
284 |
+
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
285 |
+
base_height = int(text_height * 0.675)
|
286 |
+
text_offset_original = text_height - base_height
|
287 |
+
text_spaces = 2
|
288 |
+
|
289 |
+
# num_bboxes = sum(len(x[-1]) for x in entities)
|
290 |
+
used_colors = colors # random.sample(colors, k=num_bboxes)
|
291 |
+
|
292 |
+
color_id = -1
|
293 |
+
for entity_idx, entity_name in enumerate(entities):
|
294 |
+
if mode == 'single' or mode == 'identify':
|
295 |
+
bboxes = entity_name
|
296 |
+
bboxes = [bboxes]
|
297 |
+
else:
|
298 |
+
bboxes = entities[entity_name]
|
299 |
+
color_id += 1
|
300 |
+
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
|
301 |
+
skip_flag = False
|
302 |
+
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm)
|
303 |
+
|
304 |
+
color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist())
|
305 |
+
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
306 |
+
|
307 |
+
if mode == 'all':
|
308 |
+
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
309 |
+
|
310 |
+
x1 = orig_x1 - l_o
|
311 |
+
y1 = orig_y1 - l_o
|
312 |
+
|
313 |
+
if y1 < text_height + text_offset_original + 2 * text_spaces:
|
314 |
+
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
|
315 |
+
x1 = orig_x1 + r_o
|
316 |
+
|
317 |
+
# add text background
|
318 |
+
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size,
|
319 |
+
text_line)
|
320 |
+
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (
|
321 |
+
text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
|
322 |
+
|
323 |
+
for prev_bbox in previous_bboxes:
|
324 |
+
if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \
|
325 |
+
prev_bbox['phrase'] == entity_name:
|
326 |
+
skip_flag = True
|
327 |
+
break
|
328 |
+
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']):
|
329 |
+
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
|
330 |
+
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
|
331 |
+
y1 += (text_height + text_offset_original + 2 * text_spaces)
|
332 |
+
|
333 |
+
if text_bg_y2 >= image_h:
|
334 |
+
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
|
335 |
+
text_bg_y2 = image_h
|
336 |
+
y1 = image_h
|
337 |
+
break
|
338 |
+
if not skip_flag:
|
339 |
+
alpha = 0.5
|
340 |
+
for i in range(text_bg_y1, text_bg_y2):
|
341 |
+
for j in range(text_bg_x1, text_bg_x2):
|
342 |
+
if i < image_h and j < image_w:
|
343 |
+
if j < text_bg_x1 + 1.35 * c_width:
|
344 |
+
# original color
|
345 |
+
bg_color = color
|
346 |
+
else:
|
347 |
+
# white
|
348 |
+
bg_color = [255, 255, 255]
|
349 |
+
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(
|
350 |
+
np.uint8)
|
351 |
+
|
352 |
+
cv2.putText(
|
353 |
+
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces),
|
354 |
+
cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
|
355 |
+
)
|
356 |
+
|
357 |
+
previous_bboxes.append(
|
358 |
+
{'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name})
|
359 |
+
|
360 |
+
if mode == 'all':
|
361 |
+
def color_iterator(colors):
|
362 |
+
while True:
|
363 |
+
for color in colors:
|
364 |
+
yield color
|
365 |
+
|
366 |
+
color_gen = color_iterator(colors)
|
367 |
+
|
368 |
+
# Add colors to phrases and remove <p></p>
|
369 |
+
def colored_phrases(match):
|
370 |
+
phrase = match.group(1)
|
371 |
+
color = next(color_gen)
|
372 |
+
return f'<span style="color:rgb{color}">{phrase}</span>'
|
373 |
+
|
374 |
+
generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|<delim>', '', generation)
|
375 |
+
generation_colored = re.sub(r'<p>(.*?)</p>', colored_phrases, generation)
|
376 |
+
else:
|
377 |
+
generation_colored = ''
|
378 |
+
|
379 |
+
pil_image = Image.fromarray(new_image)
|
380 |
+
return pil_image, generation_colored
|
381 |
+
|
382 |
|
383 |
def gradio_reset(chat_state, img_list):
|
384 |
if chat_state is not None:
|
385 |
chat_state.messages = []
|
386 |
if img_list is not None:
|
387 |
img_list = []
|
388 |
+
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat',
|
389 |
+
interactive=True), chat_state, img_list
|
390 |
+
|
391 |
+
|
392 |
+
def image_upload_trigger(upload_flag, replace_flag, img_list):
|
393 |
+
# set the upload flag to true when receive a new image.
|
394 |
+
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
|
395 |
+
upload_flag = 1
|
396 |
+
if img_list:
|
397 |
+
replace_flag = 1
|
398 |
+
return upload_flag, replace_flag
|
399 |
+
|
400 |
+
|
401 |
+
def example_trigger(text_input, image, upload_flag, replace_flag, img_list):
|
402 |
+
# set the upload flag to true when receive a new image.
|
403 |
+
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
|
404 |
+
upload_flag = 1
|
405 |
+
if img_list or replace_flag == 1:
|
406 |
+
replace_flag = 1
|
407 |
|
408 |
+
return upload_flag, replace_flag
|
|
|
|
|
|
|
|
|
|
|
409 |
|
|
|
410 |
|
411 |
+
def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag):
|
412 |
if len(user_message) == 0:
|
413 |
+
text_box_show = 'Input should not be empty!'
|
414 |
+
else:
|
415 |
+
text_box_show = ''
|
416 |
+
|
417 |
+
if isinstance(gr_img, dict):
|
418 |
+
gr_img, mask = gr_img['image'], gr_img['mask']
|
419 |
+
else:
|
420 |
+
mask = None
|
421 |
+
|
422 |
+
if '[identify]' in user_message:
|
423 |
+
# check if user provide bbox in the text input
|
424 |
+
integers = re.findall(r'-?\d+', user_message)
|
425 |
+
if len(integers) != 4: # no bbox in text
|
426 |
+
bbox = mask2bbox(mask)
|
427 |
+
user_message = user_message + bbox
|
428 |
+
|
429 |
+
if chat_state is None:
|
430 |
+
chat_state = CONV_VISION.copy()
|
431 |
+
|
432 |
+
if upload_flag:
|
433 |
+
if replace_flag:
|
434 |
+
chat_state = CONV_VISION.copy() # new image, reset everything
|
435 |
+
replace_flag = 0
|
436 |
+
chatbot = []
|
437 |
+
img_list = []
|
438 |
+
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
439 |
+
upload_flag = 0
|
440 |
+
|
441 |
chat.ask(user_message, chat_state)
|
442 |
+
|
443 |
chatbot = chatbot + [[user_message, None]]
|
|
|
444 |
|
445 |
+
if '[identify]' in user_message:
|
446 |
+
visual_img, _ = visualize_all_bbox_together(gr_img, user_message)
|
447 |
+
if visual_img is not None:
|
448 |
+
file_path = save_tmp_img(visual_img)
|
449 |
+
chatbot = chatbot + [[(file_path,), None]]
|
450 |
+
|
451 |
+
return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag
|
452 |
|
453 |
+
|
454 |
+
def gradio_answer(chatbot, chat_state, img_list, temperature):
|
455 |
+
llm_message = chat.answer(conv=chat_state,
|
456 |
+
img_list=img_list,
|
457 |
+
temperature=temperature,
|
458 |
+
max_new_tokens=500,
|
459 |
+
max_length=2000)[0]
|
460 |
chatbot[-1][1] = llm_message
|
461 |
+
return chatbot, chat_state
|
462 |
+
|
463 |
+
|
464 |
+
def gradio_stream_answer(chatbot, chat_state, img_list, temperature):
|
465 |
+
if len(img_list) > 0:
|
466 |
+
if not isinstance(img_list[0], torch.Tensor):
|
467 |
+
chat.encode_img(img_list)
|
468 |
+
streamer = chat.stream_answer(conv=chat_state,
|
469 |
+
img_list=img_list,
|
470 |
+
temperature=temperature,
|
471 |
+
max_new_tokens=500,
|
472 |
+
max_length=2000)
|
473 |
+
output = ''
|
474 |
+
for new_output in streamer:
|
475 |
+
if '###' in new_output:
|
476 |
+
|
477 |
+
new_output = new_output.split('###')[0]
|
478 |
+
output += escape_markdown(new_output)
|
479 |
+
chatbot[-1][1] = output
|
480 |
+
|
481 |
+
yield chatbot, chat_state
|
482 |
+
break
|
483 |
+
escapped = escape_markdown(new_output)
|
484 |
+
output += escapped
|
485 |
+
chatbot[-1][1] = output
|
486 |
+
yield chatbot, chat_state
|
487 |
+
|
488 |
+
return chatbot, chat_state
|
489 |
+
|
490 |
|
491 |
+
def gradio_visualize(chatbot, gr_img):
|
492 |
+
if isinstance(gr_img, dict):
|
493 |
+
gr_img, mask = gr_img['image'], gr_img['mask']
|
494 |
+
|
495 |
+
unescaped = reverse_escape(chatbot[-1][1])
|
496 |
+
visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped)
|
497 |
+
if visual_img is not None:
|
498 |
+
if len(generation_color):
|
499 |
+
chatbot[-1][1] = generation_color
|
500 |
+
file_path = save_tmp_img(visual_img)
|
501 |
+
chatbot = chatbot + [[None, (file_path,)]]
|
502 |
+
|
503 |
+
return chatbot
|
504 |
+
|
505 |
+
|
506 |
+
def gradio_taskselect(idx):
|
507 |
+
prompt_list = [
|
508 |
+
'',
|
509 |
+
'[grounding] describe this image in detail',
|
510 |
+
'[refer] ',
|
511 |
+
'[detection] ',
|
512 |
+
'[identify] what is this ',
|
513 |
+
'[vqa] '
|
514 |
+
]
|
515 |
+
instruct_list = [
|
516 |
+
'**Hint:** Type in whatever you want',
|
517 |
+
'**Hint:** Send the command to generate a grounded image description',
|
518 |
+
'**Hint:** Type in a phrase about an object in the image and send the command',
|
519 |
+
'**Hint:** Type in a caption or phrase, and see object locations in the image',
|
520 |
+
'**Hint:** Draw a bounding box on the uploaded image then send the command. Click the "clear" botton on the top right of the image before redraw',
|
521 |
+
'**Hint:** Send a question to get a short answer',
|
522 |
+
]
|
523 |
+
return prompt_list[idx], instruct_list[idx]
|
524 |
+
|
525 |
+
|
526 |
+
|
527 |
+
|
528 |
+
chat = Chat(model, vis_processor, device=device)
|
529 |
+
|
530 |
+
title = """<h1 align="center">TinyGPT-V Demo</h1>"""
|
531 |
+
description = 'Welcome to Our TinyGPT-V Chatbot Demo!'
|
532 |
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://github.com/DLYuanGod/TinyGPT-V'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://arxiv.org/abs/2312.16862'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
|
533 |
"""
|
534 |
|
535 |
+
introduction = '''
|
536 |
+
For Abilities Involving Visual Grounding:
|
537 |
+
1. Grounding: CLICK **Send** to generate a grounded image description.
|
538 |
+
2. Refer: Input a referring object and CLICK **Send**.
|
539 |
+
3. Detection: Write a caption or phrase, and CLICK **Send**.
|
540 |
+
4. Identify: Draw the bounding box on the uploaded image window and CLICK **Send** to generate the bounding box. (CLICK "clear" button before re-drawing next time).
|
541 |
+
5. VQA: Input a visual question and CLICK **Send**.
|
542 |
+
6. No Tag: Input whatever you want and CLICK **Send** without any tagging
|
543 |
+
|
544 |
+
You can also simply chat in free form!
|
545 |
+
'''
|
546 |
|
547 |
+
text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False,
|
548 |
+
scale=8)
|
549 |
with gr.Blocks() as demo:
|
550 |
gr.Markdown(title)
|
551 |
+
# gr.Markdown(description)
|
|
|
552 |
gr.Markdown(article)
|
553 |
|
554 |
with gr.Row():
|
555 |
with gr.Column(scale=0.5):
|
556 |
+
image = gr.Image(type="pil", tool='sketch', brush_radius=20)
|
557 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
temperature = gr.Slider(
|
559 |
minimum=0.1,
|
560 |
+
maximum=1.5,
|
561 |
+
value=0.6,
|
562 |
step=0.1,
|
563 |
interactive=True,
|
564 |
label="Temperature",
|
565 |
)
|
566 |
+
|
567 |
+
clear = gr.Button("Restart")
|
568 |
+
|
569 |
+
gr.Markdown(introduction)
|
570 |
|
571 |
with gr.Column():
|
572 |
+
chat_state = gr.State(value=None)
|
573 |
+
img_list = gr.State(value=[])
|
574 |
chatbot = gr.Chatbot(label='TinyGPT-V')
|
575 |
+
|
576 |
+
dataset = gr.Dataset(
|
577 |
+
components=[gr.Textbox(visible=False)],
|
578 |
+
samples=[['No Tag'], ['Grounding'], ['Refer'], ['Detection'], ['Identify'], ['VQA']],
|
579 |
+
type="index",
|
580 |
+
label='Task Shortcuts',
|
581 |
+
)
|
582 |
+
task_inst = gr.Markdown('**Hint:** Upload your image and chat')
|
583 |
+
with gr.Row():
|
584 |
+
text_input.render()
|
585 |
+
send = gr.Button("Send", variant='primary', size='sm', scale=1)
|
586 |
+
|
587 |
+
upload_flag = gr.State(value=0)
|
588 |
+
replace_flag = gr.State(value=0)
|
589 |
+
image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag])
|
590 |
+
|
591 |
+
|
592 |
+
|
593 |
+
dataset.click(
|
594 |
+
gradio_taskselect,
|
595 |
+
inputs=[dataset],
|
596 |
+
outputs=[text_input, task_inst],
|
597 |
+
show_progress="hidden",
|
598 |
+
postprocess=False,
|
599 |
+
queue=False,
|
600 |
+
)
|
601 |
+
|
602 |
+
text_input.submit(
|
603 |
+
gradio_ask,
|
604 |
+
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
605 |
+
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
606 |
+
).success(
|
607 |
+
gradio_stream_answer,
|
608 |
+
[chatbot, chat_state, img_list, temperature],
|
609 |
+
[chatbot, chat_state]
|
610 |
+
).success(
|
611 |
+
gradio_visualize,
|
612 |
+
[chatbot, image],
|
613 |
+
[chatbot],
|
614 |
+
queue=False,
|
615 |
)
|
|
|
616 |
|
617 |
+
send.click(
|
618 |
+
gradio_ask,
|
619 |
+
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
|
620 |
+
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
|
621 |
+
).success(
|
622 |
+
gradio_stream_answer,
|
623 |
+
[chatbot, chat_state, img_list, temperature],
|
624 |
+
[chatbot, chat_state]
|
625 |
+
).success(
|
626 |
+
gradio_visualize,
|
627 |
+
[chatbot, image],
|
628 |
+
[chatbot],
|
629 |
+
queue=False,
|
630 |
+
)
|
631 |
+
|
632 |
+
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False)
|
633 |
+
|
634 |
+
demo.launch(share=True, enable_queue=True)
|
appv1.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
import torch.backends.cudnn as cudnn
|
9 |
+
from minigpt4.common.config import Config
|
10 |
+
from minigpt4.common.dist_utils import get_rank
|
11 |
+
from minigpt4.common.registry import registry
|
12 |
+
from minigpt4.conversation.conversation import Chat, CONV_VISION
|
13 |
+
|
14 |
+
# imports modules for registration
|
15 |
+
from minigpt4.datasets.builders import *
|
16 |
+
from minigpt4.models import *
|
17 |
+
from minigpt4.processors import *
|
18 |
+
from minigpt4.runners import *
|
19 |
+
from minigpt4.tasks import *
|
20 |
+
|
21 |
+
def parse_args():
|
22 |
+
parser = argparse.ArgumentParser(description="Demo")
|
23 |
+
parser.add_argument("--cfg-path", type=str, default='eval_configs/tinygptv_stage1_2_3_eval.yaml', help="path to configuration file.")
|
24 |
+
parser.add_argument(
|
25 |
+
"--options",
|
26 |
+
nargs="+",
|
27 |
+
help="override some settings in the used config, the key-value pair "
|
28 |
+
"in xxx=yyy format will be merged into config file (deprecate), "
|
29 |
+
"change to --cfg-options instead.",
|
30 |
+
)
|
31 |
+
args = parser.parse_args()
|
32 |
+
return args
|
33 |
+
|
34 |
+
|
35 |
+
def setup_seeds(config):
|
36 |
+
seed = config.run_cfg.seed + get_rank()
|
37 |
+
|
38 |
+
random.seed(seed)
|
39 |
+
np.random.seed(seed)
|
40 |
+
torch.manual_seed(seed)
|
41 |
+
|
42 |
+
cudnn.benchmark = False
|
43 |
+
cudnn.deterministic = True
|
44 |
+
# ========================================
|
45 |
+
# Model Initialization
|
46 |
+
# ========================================
|
47 |
+
|
48 |
+
SHARED_UI_WARNING = f'''### [NOTE] It is possible that you are waiting in a lengthy queue.
|
49 |
+
|
50 |
+
You can duplicate and use it with a paid private GPU.
|
51 |
+
|
52 |
+
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/Vision-CAIR/minigpt4?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
|
53 |
+
|
54 |
+
Alternatively, you can also use the demo on our [project page](https://minigpt-4.github.io).
|
55 |
+
'''
|
56 |
+
|
57 |
+
print('Initializing Chat')
|
58 |
+
cfg = Config(parse_args())
|
59 |
+
|
60 |
+
model_config = cfg.model_cfg
|
61 |
+
model_cls = registry.get_model_class(model_config.arch)
|
62 |
+
model = model_cls.from_config(model_config).to('cuda:0')
|
63 |
+
|
64 |
+
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
|
65 |
+
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
66 |
+
chat = Chat(model, vis_processor)
|
67 |
+
print('Initialization Finished')
|
68 |
+
|
69 |
+
# ========================================
|
70 |
+
# Gradio Setting
|
71 |
+
# ========================================
|
72 |
+
|
73 |
+
def gradio_reset(chat_state, img_list):
|
74 |
+
if chat_state is not None:
|
75 |
+
chat_state.messages = []
|
76 |
+
if img_list is not None:
|
77 |
+
img_list = []
|
78 |
+
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False), gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
|
79 |
+
|
80 |
+
def upload_img(gr_img, text_input, chat_state):
|
81 |
+
if gr_img is None:
|
82 |
+
return None, None, gr.update(interactive=True), chat_state, None
|
83 |
+
chat_state = CONV_VISION.copy()
|
84 |
+
img_list = []
|
85 |
+
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
86 |
+
|
87 |
+
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
|
88 |
+
|
89 |
+
def gradio_ask(user_message, chatbot, chat_state):
|
90 |
+
if len(user_message) == 0:
|
91 |
+
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
92 |
+
chat.ask(user_message, chat_state)
|
93 |
+
chatbot = chatbot + [[user_message, None]]
|
94 |
+
return '', chatbot, chat_state
|
95 |
+
|
96 |
+
|
97 |
+
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
|
98 |
+
llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature, max_length=2000)[0]
|
99 |
+
chatbot[-1][1] = llm_message
|
100 |
+
return chatbot, chat_state, img_list
|
101 |
+
|
102 |
+
title = """<h1 align="center">Demo of TinyGPT-V</h1>"""
|
103 |
+
description = """<h3>This is the demo of TinyGPT-V. Upload your images and start chatting!</h3>"""
|
104 |
+
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://github.com/DLYuanGod/TinyGPT-V'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://arxiv.org/abs/2312.16862'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
|
105 |
+
"""
|
106 |
+
|
107 |
+
#TODO show examples below
|
108 |
+
|
109 |
+
with gr.Blocks() as demo:
|
110 |
+
gr.Markdown(title)
|
111 |
+
|
112 |
+
gr.Markdown(description)
|
113 |
+
gr.Markdown(article)
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column(scale=0.5):
|
117 |
+
image = gr.Image(type="pil")
|
118 |
+
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
119 |
+
clear = gr.Button("Restart")
|
120 |
+
|
121 |
+
num_beams = gr.Slider(
|
122 |
+
minimum=1,
|
123 |
+
maximum=5,
|
124 |
+
value=1,
|
125 |
+
step=1,
|
126 |
+
interactive=True,
|
127 |
+
label="beam search numbers)",
|
128 |
+
)
|
129 |
+
|
130 |
+
temperature = gr.Slider(
|
131 |
+
minimum=0.1,
|
132 |
+
maximum=2.0,
|
133 |
+
value=1.0,
|
134 |
+
step=0.1,
|
135 |
+
interactive=True,
|
136 |
+
label="Temperature",
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
with gr.Column():
|
141 |
+
chat_state = gr.State()
|
142 |
+
img_list = gr.State()
|
143 |
+
chatbot = gr.Chatbot(label='TinyGPT-V')
|
144 |
+
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
|
145 |
+
|
146 |
+
upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])
|
147 |
+
|
148 |
+
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
149 |
+
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
150 |
+
)
|
151 |
+
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)
|
152 |
+
|
153 |
+
demo.launch(enable_queue=True)
|
eval_configs/tinygptv_stage4_eval.yaml
CHANGED
@@ -4,8 +4,8 @@ model:
|
|
4 |
max_txt_len: 500
|
5 |
bos_token_id: "###"
|
6 |
low_resource: False
|
7 |
-
prompt_template: '
|
8 |
-
ckpt: "
|
9 |
lora_r: 64
|
10 |
lora_alpha: 16
|
11 |
|
|
|
4 |
max_txt_len: 500
|
5 |
bos_token_id: "###"
|
6 |
low_resource: False
|
7 |
+
prompt_template: '###Human: {} ###Assistant: '
|
8 |
+
ckpt: "checkpoint_49.pth"
|
9 |
lora_r: 64
|
10 |
lora_alpha: 16
|
11 |
|