Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,099 Bytes
9ab270d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import numpy as np
import copy
from tqdm.auto import trange
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import *
from diffusers.models.transformers import Transformer2DModel
original_Transformer2DModel_forward = Transformer2DModel.forward
def hacked_Transformer2DModel_forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
cross_attention_kwargs = cross_attention_kwargs or {}
cross_attention_kwargs['hidden_states_original_shape'] = hidden_states.shape
return original_Transformer2DModel_forward(
self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, class_labels, cross_attention_kwargs,
attention_mask, encoder_attention_mask, return_dict)
Transformer2DModel.forward = hacked_Transformer2DModel_forward
@torch.no_grad()
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
old_denoised = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
return x
class KModel:
def __init__(self, unet, timesteps=1000, linear_start=0.00085, linear_end=0.012):
betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, timesteps, dtype=torch.float64) ** 2
alphas = 1. - betas
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
self.log_sigmas = self.sigmas.log()
self.sigma_data = 1.0
self.unet = unet
return
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma):
log_sigma = sigma.log()
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
def get_sigmas_karras(self, n, rho=7.):
ramp = torch.linspace(0, 1, n)
min_inv_rho = self.sigma_min ** (1 / rho)
max_inv_rho = self.sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return torch.cat([sigmas, sigmas.new_zeros([1])])
def __call__(self, x, sigma, **extra_args):
x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data ** 2) ** 0.5
t = self.timestep(sigma)
cfg_scale = extra_args['cfg_scale']
eps_positive = self.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0]
eps_negative = self.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0]
noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative)
return x - noise_pred * sigma[:, None, None, None]
class OmostSelfAttnProcessor:
def __call__(self, attn, hidden_states, encoder_hidden_states, hidden_states_original_shape, *args, **kwargs):
batch_size, sequence_length, _ = hidden_states.shape
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = torch.nn.functional.scaled_dot_product_attention(
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class OmostCrossAttnProcessor:
def __call__(self, attn, hidden_states, encoder_hidden_states, hidden_states_original_shape, *args, **kwargs):
B, C, H, W = hidden_states_original_shape
conds = []
masks = []
for m, c in encoder_hidden_states:
m = torch.nn.functional.interpolate(m[None, None, :, :], (H, W), mode='nearest-exact').flatten().unsqueeze(1).repeat(1, c.size(1))
conds.append(c)
masks.append(m)
conds = torch.cat(conds, dim=1)
masks = torch.cat(masks, dim=1)
mask_bool = masks > 0.5
mask_scale = (H * W) / torch.sum(masks, dim=0, keepdim=True)
batch_size, sequence_length, _ = conds.shape
query = attn.to_q(hidden_states)
key = attn.to_k(conds)
value = attn.to_v(conds)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
mask_bool = mask_bool[None, None, :, :].repeat(query.size(0), query.size(1), 1, 1)
mask_scale = mask_scale[None, None, :, :].repeat(query.size(0), query.size(1), 1, 1)
sim = query @ key.transpose(-2, -1) * attn.scale
sim = sim * mask_scale.to(sim)
sim.masked_fill_(mask_bool.logical_not(), float("-inf"))
sim = sim.softmax(dim=-1)
h = sim @ value
h = h.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
h = attn.to_out[0](h)
h = attn.to_out[1](h)
return h
class StableDiffusionXLOmostPipeline(StableDiffusionXLImg2ImgPipeline):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.k_model = KModel(unet=self.unet)
attn_procs = {}
for name in self.unet.attn_processors.keys():
if name.endswith("attn2.processor"):
attn_procs[name] = OmostCrossAttnProcessor()
else:
attn_procs[name] = OmostSelfAttnProcessor()
self.unet.set_attn_processor(attn_procs)
return
@torch.inference_mode()
def encode_bag_of_subprompts_greedy(self, prefixes: list[str], suffixes: list[str]):
device = self.text_encoder.device
@torch.inference_mode()
def greedy_partition(items, max_sum):
bags = []
current_bag = []
current_sum = 0
for item in items:
num = item['length']
if current_sum + num > max_sum:
if current_bag:
bags.append(current_bag)
current_bag = [item]
current_sum = num
else:
current_bag.append(item)
current_sum += num
if current_bag:
bags.append(current_bag)
return bags
@torch.inference_mode()
def get_77_tokens_in_torch(subprompt_inds, tokenizer):
# Note that all subprompt are theoretically less than 75 tokens (without bos/eos)
result = [tokenizer.bos_token_id] + subprompt_inds[:75] + [tokenizer.eos_token_id] + [tokenizer.pad_token_id] * 75
result = result[:77]
result = torch.tensor([result]).to(device=device, dtype=torch.int64)
return result
@torch.inference_mode()
def merge_with_prefix(bag):
merged_ids_t1 = copy.deepcopy(prefix_ids_t1)
merged_ids_t2 = copy.deepcopy(prefix_ids_t2)
for item in bag:
merged_ids_t1.extend(item['ids_t1'])
merged_ids_t2.extend(item['ids_t2'])
return dict(
ids_t1=get_77_tokens_in_torch(merged_ids_t1, self.tokenizer),
ids_t2=get_77_tokens_in_torch(merged_ids_t2, self.tokenizer_2)
)
@torch.inference_mode()
def double_encode(pair_of_inds):
inds = [pair_of_inds['ids_t1'], pair_of_inds['ids_t2']]
text_encoders = [self.text_encoder, self.text_encoder_2]
pooled_prompt_embeds = None
prompt_embeds_list = []
for text_input_ids, text_encoder in zip(inds, text_encoders):
prompt_embeds = text_encoder(text_input_ids, output_hidden_states=True)
# Only last pooler_output is needed
pooled_prompt_embeds = prompt_embeds.pooler_output
# "2" because SDXL always indexes from the penultimate layer.
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
return prompt_embeds, pooled_prompt_embeds
# Begin with tokenizing prefixes
prefix_length = 0
prefix_ids_t1 = []
prefix_ids_t2 = []
for prefix in prefixes:
ids_t1 = self.tokenizer(prefix, truncation=False, add_special_tokens=False).input_ids
ids_t2 = self.tokenizer_2(prefix, truncation=False, add_special_tokens=False).input_ids
assert len(ids_t1) == len(ids_t2)
prefix_length += len(ids_t1)
prefix_ids_t1 += ids_t1
prefix_ids_t2 += ids_t2
# Then tokenizing suffixes
allowed_suffix_length = 75 - prefix_length
suffix_targets = []
for subprompt in suffixes:
# Note that all subprompt are theoretically less than 75 tokens (without bos/eos)
# So we can safely just crop it to 75
ids_t1 = self.tokenizer(subprompt, truncation=False, add_special_tokens=False).input_ids[:75]
ids_t2 = self.tokenizer_2(subprompt, truncation=False, add_special_tokens=False).input_ids[:75]
assert len(ids_t1) == len(ids_t2)
suffix_targets.append(dict(
length=len(ids_t1),
ids_t1=ids_t1,
ids_t2=ids_t2
))
# Then merge prefix and suffix tokens
suffix_targets = greedy_partition(suffix_targets, max_sum=allowed_suffix_length)
targets = [merge_with_prefix(b) for b in suffix_targets]
# Encode!
conds, poolers = [], []
for target in targets:
cond, pooler = double_encode(target)
conds.append(cond)
poolers.append(pooler)
conds_merged = torch.concat(conds, dim=1)
poolers_merged = poolers[0]
return dict(cond=conds_merged, pooler=poolers_merged)
@torch.inference_mode()
def all_conds_from_canvas(self, canvas_outputs, negative_prompt):
mask_all = torch.ones(size=(90, 90), dtype=torch.float32)
negative_cond, negative_pooler = self.encode_cropped_prompt_77tokens(negative_prompt)
negative_result = [(mask_all, negative_cond)]
positive_result = []
positive_pooler = None
for item in canvas_outputs['bag_of_conditions']:
current_mask = torch.from_numpy(item['mask']).to(torch.float32)
current_prefixes = item['prefixes']
current_suffixes = item['suffixes']
current_cond = self.encode_bag_of_subprompts_greedy(prefixes=current_prefixes, suffixes=current_suffixes)
if positive_pooler is None:
positive_pooler = current_cond['pooler']
positive_result.append((current_mask, current_cond['cond']))
return positive_result, positive_pooler, negative_result, negative_pooler
@torch.inference_mode()
def encode_cropped_prompt_77tokens(self, prompt: str):
device = self.text_encoder.device
tokenizers = [self.tokenizer, self.tokenizer_2]
text_encoders = [self.text_encoder, self.text_encoder_2]
pooled_prompt_embeds = None
prompt_embeds_list = []
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_input_ids = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
# Only last pooler_output is needed
pooled_prompt_embeds = prompt_embeds.pooler_output
# "2" because SDXL always indexes from the penultimate layer.
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
return prompt_embeds, pooled_prompt_embeds
@torch.inference_mode()
def __call__(
self,
initial_latent: torch.FloatTensor = None,
strength: float = 1.0,
num_inference_steps: int = 25,
guidance_scale: float = 5.0,
batch_size: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[dict] = None,
):
device = self.unet.device
cross_attention_kwargs = cross_attention_kwargs or {}
# Sigmas
sigmas = self.k_model.get_sigmas_karras(int(num_inference_steps / strength))
sigmas = sigmas[-(num_inference_steps + 1):].to(device)
# Initial latents
_, C, H, W = initial_latent.shape
noise = randn_tensor((batch_size, C, H, W), generator=generator, device=device, dtype=self.unet.dtype)
latents = initial_latent.to(noise) + noise * sigmas[0].to(noise)
# Shape
height, width = latents.shape[-2:]
height = height * self.vae_scale_factor
width = width * self.vae_scale_factor
add_time_ids = list((height, width) + (0, 0) + (height, width))
add_time_ids = torch.tensor([add_time_ids], dtype=self.unet.dtype)
add_neg_time_ids = add_time_ids.clone()
# Batch
latents = latents.to(device)
add_time_ids = add_time_ids.repeat(batch_size, 1).to(device)
add_neg_time_ids = add_neg_time_ids.repeat(batch_size, 1).to(device)
prompt_embeds = [(k.to(device), v.repeat(batch_size, 1, 1).to(noise)) for k, v in prompt_embeds]
negative_prompt_embeds = [(k.to(device), v.repeat(batch_size, 1, 1).to(noise)) for k, v in negative_prompt_embeds]
pooled_prompt_embeds = pooled_prompt_embeds.repeat(batch_size, 1).to(noise)
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(batch_size, 1).to(noise)
# Feeds
sampler_kwargs = dict(
cfg_scale=guidance_scale,
positive=dict(
encoder_hidden_states=prompt_embeds,
added_cond_kwargs={"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids},
cross_attention_kwargs=cross_attention_kwargs
),
negative=dict(
encoder_hidden_states=negative_prompt_embeds,
added_cond_kwargs={"text_embeds": negative_pooled_prompt_embeds, "time_ids": add_neg_time_ids},
cross_attention_kwargs=cross_attention_kwargs
)
)
# Sample
results = sample_dpmpp_2m(self.k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False)
return StableDiffusionXLPipelineOutput(images=results)
|