Spaces:
Runtime error
Runtime error
File size: 12,851 Bytes
9123479 62174a3 2ff2d8a 9123479 7d90e18 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 62174a3 9123479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import gradio as gr
import sys
import os
from datasets import load_dataset
from typing import List
MAX_BASE_LLM_NUM = 20
MIN_BASE_LLM_NUM = 3
SOURCE_MAX_LENGTH = 256
DEFAULT_SOURCE_MAX_LENGTH = 128
CANDIDATE_MAX_LENGTH = 256
DEFAULT_CANDIDATE_MAX_LENGTH = 128
FUSER_MAX_NEW_TOKENS = 512
DEFAULT_FUSER_MAX_NEW_TOKENS = 256
DESCRIPTIONS = """# LLM-BLENDER
LLM-Blender is an innovative ensembling framework to attain consistently superior performance by leveraging the diverse strengths of multiple open-source large language models (LLMs). LLM-Blender cut the weaknesses through ranking and integrate the strengths through fusing generation to enhance the capability of LLMs.
"""
EXAMPLES_DATASET = load_dataset("llm-blender/mix-instruct", split='validation', streaming=True)
SHUFFLED_EXAMPLES_DATASET = EXAMPLES_DATASET.shuffle(seed=42, buffer_size=1000)
EXAMPLES = []
CANDIDATE_EXAMPLES = {}
for example in SHUFFLED_EXAMPLES_DATASET.take(100):
EXAMPLES.append([
example['instruction'],
example['input'],
])
CANDIDATE_EXAMPLES[example['instruction']+example['input']] = example['candidates']
# Download ranker checkpoint
if not os.path.exists("pairranker-deberta-v3-large.zip"):
os.system("gdown https://drive.google.com/uc?id=1EpvFu_qYY0MaIu0BAAhK-sYKHVWtccWg")
if not os.path.exists("pairranker-deberta-v3-large"):
os.system("unzip pairranker-deberta-v3-large.zip")
# Load Blender
import llm_blender
from llm_blender.blender.blender_utils import get_topk_candidates_from_ranks
ranker_config = llm_blender.RankerConfig()
ranker_config.ranker_type = "pairranker"
ranker_config.model_type = "deberta"
ranker_config.model_name = "microsoft/deberta-v3-large" # ranker backbone
ranker_config.load_checkpoint = "./pairranker-deberta-v3-large" # ranker checkpoint <your checkpoint path>
ranker_config.source_maxlength = DEFAULT_SOURCE_MAX_LENGTH
ranker_config.candidate_maxlength = DEFAULT_CANDIDATE_MAX_LENGTH
ranker_config.n_tasks = 1 # number of singal that has been used to train the ranker. This checkpoint is trained using BARTScore only, thus being 1.
fuser_config = llm_blender.GenFuserConfig()
fuser_config.model_name = "llm-blender/gen_fuser_3b" # our pre-trained fuser
fuser_config.max_length = 1024
fuser_config.candidate_maxlength = DEFAULT_CANDIDATE_MAX_LENGTH
blender_config = llm_blender.BlenderConfig()
blender_config.device = "cpu" # blender ranker and fuser device
blender = llm_blender.Blender(blender_config, ranker_config, fuser_config)
def update_base_llms_num(k, llm_outputs):
k = int(k)
return [gr.Dropdown.update(choices=[f"LLM-{i+1}" for i in range(k)],
value=f"LLM-1" if k >= 1 else "", visible=True),
{f"LLM-{i+1}": llm_outputs.get(f"LLM-{i+1}", "") for i in range(k)}]
def display_llm_output(llm_outputs, selected_base_llm_name):
return gr.Textbox.update(value=llm_outputs.get(selected_base_llm_name, ""),
label=selected_base_llm_name + " (Click Save to save current content)",
placeholder=f"Enter {selected_base_llm_name} output here", show_label=True)
def save_llm_output(selected_base_llm_name, selected_base_llm_output, llm_outputs):
llm_outputs.update({selected_base_llm_name: selected_base_llm_output})
return llm_outputs
def get_preprocess_examples(inst, input):
# get the num_of_base_llms
candidates = CANDIDATE_EXAMPLES[inst+input]
num_candiates = len(candidates)
dummy_text = inst+input
return inst, input, num_candiates, dummy_text
def update_base_llm_dropdown_along_examples(dummy_text):
candidates = CANDIDATE_EXAMPLES[dummy_text]
ex_llm_outputs = {f"LLM-{i+1}": candidates[i]['text'] for i in range(len(candidates))}
return ex_llm_outputs
def check_save_ranker_inputs(inst, input, llm_outputs, blender_config):
if not inst and not input:
raise gr.Error("Please enter instruction or input context")
if not all([x for x in llm_outputs.values()]):
empty_llm_names = [llm_name for llm_name, llm_output in llm_outputs.items() if not llm_output]
raise gr.Error("Please enter base LLM outputs for LLMs: {}").format(empty_llm_names)
return {
"inst": inst,
"input": input,
"candidates": list(llm_outputs.values()),
}
def check_fuser_inputs(blender_state, blender_config, ranks):
pass
def llms_rank(inst, input, llm_outputs, blender_config):
candidates = list(llm_outputs.values())
rank_params = {
"source_max_length": blender_config['source_max_length'],
"candidate_max_length": blender_config['candidate_max_length'],
}
ranks = blender.rank(instructions=[inst], inputs=[input], candidates=[candidates])[0]
return [ranks, ", ".join([f"LLM-{i+1}: {rank}" for i, rank in enumerate(ranks)])]
def llms_fuse(blender_state, blender_config, ranks):
inst = blender_state['inst']
input = blender_state['input']
candidates = blender_state['candidates']
top_k_for_fuser = blender_config['top_k_for_fuser']
fuse_params = blender_config.copy()
del fuse_params["top_k_for_fuser"]
top_k_candidates = get_topk_candidates_from_ranks([ranks], [candidates], top_k=top_k_for_fuser)[0]
fuser_outputs = blender.fuse(instructions=[inst], inputs=[input], candidates=[top_k_candidates], **fuse_params)[0]
return [fuser_outputs, fuser_outputs]
def display_fuser_output(fuser_output):
return fuser_output
with gr.Blocks(theme='ParityError/Anime') as demo:
gr.Markdown(DESCRIPTIONS)
gr.Markdown("## Input and Base LLMs")
with gr.Row():
with gr.Column():
inst_textbox = gr.Textbox(lines=1, label="Instruction", placeholder="Enter instruction here", show_label=True)
input_textbox = gr.Textbox(lines=4, label="Input Context", placeholder="Enter input context here", show_label=True)
with gr.Column():
saved_llm_outputs = gr.State(value={})
with gr.Group():
selected_base_llm_name_dropdown = gr.Dropdown(label="Base LLM",
choices=[f"LLM-{i+1}" for i in range(MIN_BASE_LLM_NUM)], value="LLM-1", show_label=True)
selected_base_llm_output = gr.Textbox(lines=4, label="LLM-1 (Click Save to save current content)",
placeholder="Enter LLM-1 output here", show_label=True)
with gr.Row():
base_llm_outputs_save_button = gr.Button('Save', variant='primary')
base_llm_outputs_clear_single_button = gr.Button('Clear Single', variant='primary')
base_llm_outputs_clear_all_button = gr.Button('Clear All', variant='primary')
base_llms_num = gr.Slider(
label='Number of base llms',
minimum=MIN_BASE_LLM_NUM,
maximum=MAX_BASE_LLM_NUM,
step=1,
value=MIN_BASE_LLM_NUM,
)
blender_state = gr.State(value={})
saved_rank_outputs = gr.State(value=[])
saved_fuse_outputs = gr.State(value=[])
gr.Markdown("## Blender Outputs")
with gr.Group():
rank_outputs = gr.Textbox(lines=1, label="Ranking outputs", placeholder="Ranking outputs", show_label=True)
fuser_outputs = gr.Textbox(lines=4, label="Fusing outputs", placeholder="Fusing outputs", show_label=True)
with gr.Row():
rank_button = gr.Button('Rank LLM Outputs', variant='primary')
fuse_button = gr.Button('Fuse Top-K ranked outputs', variant='primary')
clear_button = gr.Button('Clear Blender Outputs', variant='primary')
blender_config = gr.State(value={
"source_max_length": DEFAULT_SOURCE_MAX_LENGTH,
"candidate_max_length": DEFAULT_CANDIDATE_MAX_LENGTH,
"top_k_for_fuser": 3,
"max_new_tokens": DEFAULT_FUSER_MAX_NEW_TOKENS,
"temperature": 0.7,
"top_p": 1.0,
})
with gr.Accordion(label='Advanced options', open=False):
source_max_length = gr.Slider(
label='Max length of Instruction + Input',
minimum=1,
maximum=SOURCE_MAX_LENGTH,
step=1,
value=DEFAULT_SOURCE_MAX_LENGTH,
)
candidate_max_length = gr.Slider(
label='Max length of LLM-Output Candidate',
minimum=1,
maximum=CANDIDATE_MAX_LENGTH,
step=1,
value=DEFAULT_CANDIDATE_MAX_LENGTH,
)
top_k_for_fuser = gr.Slider(
label='Top-k ranked candidates to fuse',
minimum=1,
maximum=3,
step=1,
value=3,
)
max_new_tokens = gr.Slider(
label='Max new tokens fuser can generate',
minimum=1,
maximum=FUSER_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_FUSER_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label='Temperature of fuser generation',
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.7,
)
top_p = gr.Slider(
label='Top-p of fuser generation',
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
)
examples_dummy_textbox = gr.Textbox(lines=1, label="", placeholder="", show_label=False, visible=False)
batch_examples = gr.Examples(
examples=EXAMPLES,
fn=get_preprocess_examples,
cache_examples=True,
examples_per_page=5,
inputs=[inst_textbox, input_textbox],
outputs=[inst_textbox, input_textbox, base_llms_num, examples_dummy_textbox],
)
base_llms_num.change(
fn=update_base_llms_num,
inputs=[base_llms_num, saved_llm_outputs],
outputs=[selected_base_llm_name_dropdown, saved_llm_outputs],
)
examples_dummy_textbox.change(
fn=update_base_llm_dropdown_along_examples,
inputs=[examples_dummy_textbox],
outputs=saved_llm_outputs,
).then(
fn=display_llm_output,
inputs=[saved_llm_outputs, selected_base_llm_name_dropdown],
outputs=selected_base_llm_output,
)
selected_base_llm_name_dropdown.change(
fn=display_llm_output,
inputs=[saved_llm_outputs, selected_base_llm_name_dropdown],
outputs=selected_base_llm_output,
)
base_llm_outputs_save_button.click(
fn=save_llm_output,
inputs=[selected_base_llm_name_dropdown, selected_base_llm_output, saved_llm_outputs],
outputs=saved_llm_outputs,
)
base_llm_outputs_clear_all_button.click(
fn=lambda: [{}, ""],
inputs=[],
outputs=[saved_llm_outputs, selected_base_llm_output],
)
base_llm_outputs_clear_single_button.click(
fn=lambda: "",
inputs=[],
outputs=selected_base_llm_output,
)
rank_button.click(
fn=check_save_ranker_inputs,
inputs=[inst_textbox, input_textbox, saved_llm_outputs, blender_config],
outputs=blender_state,
).success(
fn=llms_rank,
inputs=[inst_textbox, input_textbox, saved_llm_outputs, blender_config],
outputs=[saved_rank_outputs, rank_outputs],
)
fuse_button.click(
fn=check_fuser_inputs,
inputs=[blender_state, blender_config, saved_rank_outputs],
outputs=[],
).success(
fn=llms_fuse,
inputs=[blender_state, blender_config, saved_rank_outputs],
outputs=[saved_fuse_outputs, fuser_outputs],
)
clear_button.click(
fn=lambda: ["", "", {}, []],
inputs=[],
outputs=[rank_outputs, fuser_outputs, blender_state, saved_rank_outputs],
)
# update blender config
source_max_length.change(
fn=lambda x, y: y.update({"source_max_length": x}) or y,
inputs=[source_max_length, blender_config],
outputs=blender_config,
)
candidate_max_length.change(
fn=lambda x, y: y.update({"candidate_max_length": x}) or y,
inputs=[candidate_max_length, blender_config],
outputs=blender_config,
)
top_k_for_fuser.change(
fn=lambda x, y: y.update({"top_k_for_fuser": x}) or y,
inputs=[top_k_for_fuser, blender_config],
outputs=blender_config,
)
max_new_tokens.change(
fn=lambda x, y: y.update({"max_new_tokens": x}) or y,
inputs=[max_new_tokens, blender_config],
outputs=blender_config,
)
temperature.change(
fn=lambda x, y: y.update({"temperature": x}) or y,
inputs=[temperature, blender_config],
outputs=blender_config,
)
top_p.change(
fn=lambda x, y: y.update({"top_p": x}) or y,
inputs=[top_p, blender_config],
outputs=blender_config,
)
demo.queue(max_size=20).launch() |