File size: 13,777 Bytes
9123479
 
 
19d0707
9123479
 
 
 
 
62174a3
 
 
 
 
 
 
 
2ff2d8a
9123479
 
 
 
 
 
 
 
 
 
 
 
 
7d90e18
19d0707
7d90e18
19d0707
 
9123479
 
 
 
 
 
 
 
 
62174a3
 
9123479
 
 
 
62174a3
9123479
f33be86
ca4f279
9123479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcac78f
9123479
62174a3
9123479
 
 
 
 
 
 
 
 
 
 
 
62174a3
fcac78f
 
 
 
 
9123479
62174a3
9123479
62174a3
 
 
 
 
 
9123479
 
62174a3
9123479
 
 
62174a3
 
fcac78f
 
 
9123479
fcac78f
62174a3
9123479
 
 
 
 
 
 
62174a3
9123479
 
 
 
 
 
62174a3
 
 
 
 
9123479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62174a3
 
 
 
fcac78f
9123479
 
62174a3
 
 
 
 
 
 
 
 
 
 
9123479
 
fcac78f
 
 
 
 
 
 
62174a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcac78f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9123479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcac78f
9123479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62174a3
9123479
 
 
62174a3
 
9123479
 
 
 
62174a3
fcac78f
9123479
 
62174a3
 
9123479
 
 
 
 
 
 
 
62174a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcac78f
 
 
 
 
 
 
 
 
 
 
 
 
62174a3
 
 
9123479
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import gradio as gr
import sys
import os
import zipfile
from datasets import load_dataset
from typing import List

MAX_BASE_LLM_NUM = 20
MIN_BASE_LLM_NUM = 3
SOURCE_MAX_LENGTH = 256
DEFAULT_SOURCE_MAX_LENGTH = 128
CANDIDATE_MAX_LENGTH = 256
DEFAULT_CANDIDATE_MAX_LENGTH = 128
FUSER_MAX_NEW_TOKENS = 512
DEFAULT_FUSER_MAX_NEW_TOKENS = 256
DESCRIPTIONS = """# LLM-BLENDER

LLM-Blender is an innovative ensembling framework to attain consistently superior performance by leveraging the diverse strengths of multiple open-source large language models (LLMs). LLM-Blender cut the weaknesses through ranking and integrate the strengths through fusing generation to enhance the capability of LLMs.
"""
EXAMPLES_DATASET = load_dataset("llm-blender/mix-instruct", split='validation', streaming=True)
SHUFFLED_EXAMPLES_DATASET = EXAMPLES_DATASET.shuffle(seed=42, buffer_size=1000)
EXAMPLES = []
CANDIDATE_EXAMPLES = {}
for example in SHUFFLED_EXAMPLES_DATASET.take(100):
    EXAMPLES.append([
        example['instruction'],
        example['input'],
    ])
    CANDIDATE_EXAMPLES[example['instruction']+example['input']] = example['candidates']

# Download ranker checkpoint
if not os.path.exists("pairranker-deberta-v3-large.zip"):
    os.system("gdown https://drive.google.com/uc?id=1EpvFu_qYY0MaIu0BAAhK-sYKHVWtccWg")    
if not os.path.exists("pairranker-deberta-v3-large"):
    with zipfile.ZipFile("pairranker-deberta-v3-large.zip", 'r') as zip_ref:
        zip_ref.extractall(".")

# Load Blender
import llm_blender
from llm_blender.blender.blender_utils import get_topk_candidates_from_ranks
ranker_config = llm_blender.RankerConfig()
ranker_config.ranker_type = "pairranker"
ranker_config.model_type = "deberta"
ranker_config.model_name = "microsoft/deberta-v3-large" # ranker backbone
ranker_config.load_checkpoint = "./pairranker-deberta-v3-large" # ranker checkpoint <your checkpoint path>
ranker_config.source_maxlength = DEFAULT_SOURCE_MAX_LENGTH
ranker_config.candidate_maxlength = DEFAULT_CANDIDATE_MAX_LENGTH
ranker_config.n_tasks = 1 # number of singal that has been used to train the ranker. This checkpoint is trained using BARTScore only, thus being 1.
fuser_config = llm_blender.GenFuserConfig()
fuser_config.model_name = "llm-blender/gen_fuser_3b" # our pre-trained fuser
fuser_config.max_length = 1024
fuser_config.candidate_maxlength = DEFAULT_CANDIDATE_MAX_LENGTH
blender_config = llm_blender.BlenderConfig()
blender_config.load_in_8bit = True
blender_config.device = "cuda" # blender ranker and fuser device
blender = llm_blender.Blender(blender_config, ranker_config, fuser_config)

def update_base_llms_num(k, llm_outputs):
    k = int(k)
    return [gr.Dropdown.update(choices=[f"LLM-{i+1}" for i in range(k)], 
        value=f"LLM-1" if k >= 1 else "", visible=True),
        {f"LLM-{i+1}": llm_outputs.get(f"LLM-{i+1}", "") for i in range(k)}]
    

def display_llm_output(llm_outputs, selected_base_llm_name):
    return gr.Textbox.update(value=llm_outputs.get(selected_base_llm_name, ""), 
        label=selected_base_llm_name + " (Click Save to save current content)", 
        placeholder=f"Enter {selected_base_llm_name} output here", show_label=True)

def save_llm_output(selected_base_llm_name, selected_base_llm_output, llm_outputs):
    llm_outputs.update({selected_base_llm_name: selected_base_llm_output})
    return llm_outputs

def get_preprocess_examples(inst, input):
    # get the num_of_base_llms
    candidates = CANDIDATE_EXAMPLES[inst+input]
    num_candiates = len(candidates)
    dummy_text = inst+input
    return inst, input, num_candiates, dummy_text

def update_base_llm_dropdown_along_examples(dummy_text):
    candidates = CANDIDATE_EXAMPLES[dummy_text]
    ex_llm_outputs = {f"LLM-{i+1}": candidates[i]['text'] for i in range(len(candidates))}
    return ex_llm_outputs, "", ""
    
def check_save_ranker_inputs(inst, input, llm_outputs, blender_config):
    if not inst and not input:
        raise gr.Error("Please enter instruction or input context")
    
    if not all([x for x in llm_outputs.values()]):
        empty_llm_names = [llm_name for llm_name, llm_output in llm_outputs.items() if not llm_output]
        raise gr.Error("Please enter base LLM outputs for LLMs: {}").format(empty_llm_names)
    return {
        "inst": inst,
        "input": input,
        "candidates": list(llm_outputs.values()),
    }

def check_fuser_inputs(blender_state, blender_config, ranks):
    if not (blender_state.get("inst", None) or blender_state.get("input", None)):
        raise gr.Error("Please enter instruction or input context")
    if "candidates" not in blender_state or len(ranks)==0:
        raise gr.Error("Please rank LLM outputs first")
    return 

def llms_rank(inst, input, llm_outputs, blender_config):
    candidates = list(llm_outputs.values())
    rank_params = {
        "source_max_length": blender_config['source_max_length'],
        "candidate_max_length": blender_config['candidate_max_length'],
    }
    ranks = blender.rank(instructions=[inst], inputs=[input], candidates=[candidates])[0]
    return [ranks, ",  ".join([f"LLM-{i+1}: {rank}" for i, rank in enumerate(ranks)])]


def llms_fuse(blender_state, blender_config, ranks):
    inst = blender_state['inst']
    input = blender_state['input']
    candidates = blender_state['candidates']
    top_k_for_fuser = blender_config['top_k_for_fuser']
    fuse_params = blender_config.copy()
    fuse_params.pop("top_k_for_fuser")
    fuse_params.pop("source_max_length")
    fuse_params['no_repeat_ngram_size'] = 3
    top_k_candidates = get_topk_candidates_from_ranks([ranks], [candidates], top_k=top_k_for_fuser)[0]
    fuser_outputs = blender.fuse(instructions=[inst], inputs=[input], candidates=[top_k_candidates], **fuse_params, batch_size=1)[0]
    return [fuser_outputs, fuser_outputs]

def display_fuser_output(fuser_output):
    return fuser_output

        
with gr.Blocks(theme='ParityError/Anime') as demo:
    gr.Markdown(DESCRIPTIONS)
    gr.Markdown("## Input and Base LLMs")
    with gr.Row():
        with gr.Column():
            inst_textbox = gr.Textbox(lines=1, label="Instruction", placeholder="Enter instruction here", show_label=True)
            input_textbox = gr.Textbox(lines=4, label="Input Context", placeholder="Enter input context here", show_label=True)
        with gr.Column():
            saved_llm_outputs = gr.State(value={})
            with gr.Group():
                selected_base_llm_name_dropdown = gr.Dropdown(label="Base LLM",
                    choices=[f"LLM-{i+1}" for i in range(MIN_BASE_LLM_NUM)], value="LLM-1", show_label=True)
                selected_base_llm_output = gr.Textbox(lines=4, label="LLM-1 (Click Save to save current content)",
                    placeholder="Enter LLM-1 output here", show_label=True)
            with gr.Row():
                base_llm_outputs_save_button = gr.Button('Save', variant='primary')
                
                base_llm_outputs_clear_single_button = gr.Button('Clear Single', variant='primary')
                
                base_llm_outputs_clear_all_button = gr.Button('Clear All', variant='primary')
            base_llms_num = gr.Slider(
                    label='Number of base llms',
                    minimum=MIN_BASE_LLM_NUM,
                    maximum=MAX_BASE_LLM_NUM,
                    step=1,
                    value=MIN_BASE_LLM_NUM,
                )
    
    blender_state = gr.State(value={})
    saved_rank_outputs = gr.State(value=[])
    saved_fuse_outputs = gr.State(value=[])
    gr.Markdown("## Blender Outputs")
    with gr.Group():
        rank_outputs = gr.Textbox(lines=1, label="Ranks of each LLM's output", placeholder="Ranking outputs", show_label=True)
        fuser_outputs = gr.Textbox(lines=4, label="Fusing outputs", placeholder="Fusing outputs", show_label=True)
    with gr.Row():
        rank_button = gr.Button('Rank LLM Outputs', variant='primary')
        fuse_button = gr.Button('Fuse Top-K ranked outputs', variant='primary')
        clear_button = gr.Button('Clear Blender Outputs', variant='primary')
    blender_config = gr.State(value={
        "source_max_length": DEFAULT_SOURCE_MAX_LENGTH,
        "candidate_max_length": DEFAULT_CANDIDATE_MAX_LENGTH,
        "top_k_for_fuser": 3,
        "max_new_tokens": DEFAULT_FUSER_MAX_NEW_TOKENS,
        "temperature": 0.7,
        "top_p": 1.0,
    })
        
    with gr.Accordion(label='Advanced options', open=False):
        top_k_for_fuser = gr.Slider(
            label='Top-k ranked candidates to fuse',
            minimum=1,
            maximum=3,
            step=1,
            value=3,
        )
        source_max_length = gr.Slider(
            label='Max length of Instruction + Input',
            minimum=1,
            maximum=SOURCE_MAX_LENGTH,
            step=1,
            value=DEFAULT_SOURCE_MAX_LENGTH,
        )
        candidate_max_length = gr.Slider(
            label='Max length of LLM-Output Candidate',
            minimum=1,
            maximum=CANDIDATE_MAX_LENGTH,
            step=1,
            value=DEFAULT_CANDIDATE_MAX_LENGTH,
        )
        max_new_tokens = gr.Slider(
            label='Max new tokens fuser can generate',
            minimum=1,
            maximum=FUSER_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_FUSER_MAX_NEW_TOKENS,
        )
        # temperature = gr.Slider(
        #     label='Temperature of fuser generation',
        #     minimum=0.1,
        #     maximum=2.0,
        #     step=0.1,
        #     value=0.7,
        # )
        # top_p = gr.Slider(
        #     label='Top-p of fuser generation',
        #     minimum=0.05,
        #     maximum=1.0,
        #     step=0.05,
        #     value=1.0,
        # )
        beam_size = gr.Slider(
            label='Beam size of fuser generation',
            minimum=1,
            maximum=10,
            step=1,
            value=4,
        )
    
    examples_dummy_textbox = gr.Textbox(lines=1, label="", placeholder="", show_label=False, visible=False)     
    batch_examples = gr.Examples(
        examples=EXAMPLES,
        fn=get_preprocess_examples,
        cache_examples=True,
        examples_per_page=5,
        inputs=[inst_textbox, input_textbox],
        outputs=[inst_textbox, input_textbox, base_llms_num, examples_dummy_textbox],
    )
        
    base_llms_num.change(
        fn=update_base_llms_num,
        inputs=[base_llms_num, saved_llm_outputs],
        outputs=[selected_base_llm_name_dropdown, saved_llm_outputs],
    )
    
    examples_dummy_textbox.change(
        fn=update_base_llm_dropdown_along_examples,
        inputs=[examples_dummy_textbox],
        outputs=[saved_llm_outputs, rank_outputs, fuser_outputs],
    ).then(
        fn=display_llm_output,
        inputs=[saved_llm_outputs, selected_base_llm_name_dropdown],
        outputs=selected_base_llm_output,
    )
    
    selected_base_llm_name_dropdown.change(
        fn=display_llm_output,
        inputs=[saved_llm_outputs, selected_base_llm_name_dropdown],
        outputs=selected_base_llm_output,
    )
    
    base_llm_outputs_save_button.click(
        fn=save_llm_output,
        inputs=[selected_base_llm_name_dropdown, selected_base_llm_output, saved_llm_outputs],
        outputs=saved_llm_outputs,
    )
    base_llm_outputs_clear_all_button.click(
        fn=lambda: [{}, ""],
        inputs=[],
        outputs=[saved_llm_outputs, selected_base_llm_output],
    )
    base_llm_outputs_clear_single_button.click(
        fn=lambda: "",
        inputs=[],
        outputs=selected_base_llm_output,
    )
        

    rank_button.click(
        fn=check_save_ranker_inputs,
        inputs=[inst_textbox, input_textbox, saved_llm_outputs, blender_config],
        outputs=blender_state,
    ).success(
        fn=llms_rank,
        inputs=[inst_textbox, input_textbox, saved_llm_outputs, blender_config],
        outputs=[saved_rank_outputs, rank_outputs],
    )
    
    fuse_button.click(
        fn=check_fuser_inputs,
        inputs=[blender_state, blender_config, saved_rank_outputs],
        outputs=fuser_outputs,
    ).success(
        fn=llms_fuse,
        inputs=[blender_state, blender_config, saved_rank_outputs],
        outputs=[saved_fuse_outputs, fuser_outputs],
    )
    
    clear_button.click(
        fn=lambda: ["", "", {}, []],
        inputs=[],
        outputs=[rank_outputs, fuser_outputs, blender_state, saved_rank_outputs],
    )
    
    # update blender config
    source_max_length.change(
        fn=lambda x, y: y.update({"source_max_length": x}) or y,
        inputs=[source_max_length, blender_config],
        outputs=blender_config,
    )
    candidate_max_length.change(
        fn=lambda x, y: y.update({"candidate_max_length": x}) or y,
        inputs=[candidate_max_length, blender_config],
        outputs=blender_config,
    )
    top_k_for_fuser.change(
        fn=lambda x, y: y.update({"top_k_for_fuser": x}) or y,
        inputs=[top_k_for_fuser, blender_config],
        outputs=blender_config,
    )
    max_new_tokens.change(
        fn=lambda x, y: y.update({"max_new_tokens": x}) or y,
        inputs=[max_new_tokens, blender_config],
        outputs=blender_config,
    )
    # temperature.change(
    #     fn=lambda x, y: y.update({"temperature": x}) or y,
    #     inputs=[temperature, blender_config],
    #     outputs=blender_config,
    # )
    # top_p.change(
    #     fn=lambda x, y: y.update({"top_p": x}) or y,
    #     inputs=[top_p, blender_config],
    #     outputs=blender_config,
    # )
    beam_size.change(
        fn=lambda x, y: y.update({"num_beams": x}) or y,
        inputs=[beam_size, blender_config],
        outputs=blender_config,
    )
        
        
    

demo.queue(max_size=20).launch()