LLM-Blender / model.py
DongfuJiang's picture
init
9123479
raw
history blame
3.9 kB
import gradio as gr
import torch
import llm_blender
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
StoppingCriteria, StoppingCriteriaList,
)
from accelerate import infer_auto_device_map
from typing import List
from model_utils import build_tokenizer, build_model, get_llm_prompt, get_stop_str_and_ids
BASE_LLM_NAMES = [
"chavinlo/alpaca-native",
"eachadea/vicuna-13b-1.1",
"databricks/dolly-v2-12b",
"stabilityai/stablelm-tuned-alpha-7b",
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"TheBloke/koala-13B-HF",
"project-baize/baize-v2-13b",
"google/flan-t5-xxl",
"THUDM/chatglm-6b",
"fnlp/moss-moon-003-sft",
"mosaicml/mpt-7b-chat",
]
BASE_LLM_MODELS = {
name: None for name in BASE_LLM_NAMES
}
BASE_LLM_TOKENIZERS = {
name: None for name in BASE_LLM_NAMES
}
class StopTokenIdsCriteria(StoppingCriteria):
"""
This class can be used to stop generation whenever the generated number of tokens exceeds `max_new_tokens`. Keep in
mind for decoder-only type of transformers, this will **not** include the initial prompted tokens. This is very
close to `MaxLengthCriteria` but ignores the number of initial tokens.
Args:
stop_token_ids (`List[int]`):
"""
def __init__(self, stop_token_ids: List[int]):
self.stop_token_ids = stop_token_ids
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if self.stop_token_ids:
return all(_input_ids[-1] in self.stop_token_ids for _input_ids in input_ids)
return False
def llm_generate(
base_llm_name:str, instruction:str, input:str,
max_new_tokens:int, top_p=1.0, temperature=0.7,
) -> str:
if BASE_LLM_MODELS.get(base_llm_name, None) is None:
BASE_LLM_MODELS[base_llm_name] = build_model(
base_llm_name, device_map="auto",
load_in_8bit=True, trust_remote_code=True)
if BASE_LLM_TOKENIZERS.get(base_llm_name, None) is None:
BASE_LLM_TOKENIZERS[base_llm_name] = build_tokenizer(
base_llm_name, trust_remote_code=True)
base_llm = BASE_LLM_MODELS[base_llm_name]
base_llm_tokenizer = BASE_LLM_TOKENIZERS[base_llm_name]
llm_prompt = get_llm_prompt(base_llm_name, instruction, input)
stop_str, stop_token_ids = get_stop_str_and_ids(base_llm_tokenizer)
template_length = len(base_llm_tokenizer.encode(
llm_prompt.replace(instruction, "").replace(input, "")))
encoded_llm_prompt = base_llm_tokenizer(llm_prompt,
max_length=256 + template_length,
padding='max_length', truncation=True, return_tensors="pt")
input_ids = encoded_llm_prompt["input_ids"].to(base_llm.device)
attention_mask = encoded_llm_prompt["attention_mask"].to(base_llm.device)
generate_kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"num_return_sequences": 1,
}
if stop_token_ids:
generate_kwargs['stopping_criteria'] = StoppingCriteriaList([
StopTokenIdsCriteria(stop_token_ids),
])
output_ids = base_llm.generate(**generate_kwargs)
output_ids_wo_prompt = output_ids[0, input_ids.shape[1]:]
decoded_output = base_llm_tokenizer.decode(output_ids_wo_prompt, skip_special_tokens=True)
if stop_str:
pos = decoded_output.find(stop_str)
if pos != -1:
decoded_output = decoded_output[:pos]
return decoded_output
def llms_generate(
base_llm_names, instruction, input,
max_new_tokens, top_p=1.0, temperature=0.7,
):
return {
base_llm_name: llm_generate(
base_llm_name, instruction, input, max_new_tokens, top_p, temperature)
for base_llm_name in base_llm_names
}