File size: 18,636 Bytes
f146d30
 
9346f1c
 
4596a70
2a5f9fb
 
1ffc326
0f09631
8c49cb6
 
 
 
9cb6607
8c49cb6
 
 
976f398
df66f6e
 
 
 
 
0f09631
 
 
df66f6e
 
9c999fc
0f09631
 
 
df66f6e
6b6811b
df66f6e
 
8c49cb6
57cc619
10f9b3c
50df158
d084b26
57cc619
5904ab6
d084b26
 
 
285f1d2
 
 
 
 
d084b26
 
 
 
 
 
285f1d2
 
 
 
 
d084b26
 
 
2be444d
57cc619
016c2e7
50419e9
 
 
 
016c2e7
 
50419e9
2a731a3
9c999fc
016c2e7
 
 
50419e9
 
 
57cc619
50419e9
57cc619
50419e9
 
 
 
 
57cc619
50419e9
 
 
4a39b37
50419e9
 
 
 
 
 
 
 
 
e36d99d
50419e9
 
 
96fd777
50419e9
 
 
 
 
 
 
 
 
 
 
 
 
 
016c2e7
 
 
6783fa0
016c2e7
 
3c16bf3
50419e9
31ca7f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50419e9
047f6fc
285f1d2
016c2e7
 
da97add
285f1d2
016c2e7
57cc619
da97add
047f6fc
6783fa0
 
 
57cc619
da97add
 
 
 
 
 
 
e647d43
d046801
da97add
8604d8b
016c2e7
e647d43
50419e9
 
 
285f1d2
50419e9
285f1d2
 
 
 
 
 
50419e9
 
 
 
 
 
3437d98
50419e9
 
 
 
 
 
 
 
 
 
 
 
3437d98
50419e9
 
c163b21
50419e9
 
 
 
 
3437d98
50419e9
 
 
 
 
1ea4467
3437d98
50419e9
 
 
 
 
 
016c2e7
57cc619
7ec9c70
676db2b
d1583a6
0556b59
 
 
 
 
 
 
 
285f1d2
 
 
 
 
 
 
 
 
 
 
7644705
285f1d2
 
 
 
 
 
 
 
 
 
 
676db2b
 
285f1d2
 
 
676db2b
 
 
8f302de
 
7c83c02
 
 
766a705
 
 
 
 
 
 
 
21ddc2a
766a705
 
 
 
 
 
 
 
 
 
 
 
7c83c02
ab0d007
 
 
7c83c02
 
 
 
 
 
aa3bf1f
7c83c02
 
 
 
 
aa3bf1f
7c83c02
 
 
 
 
016c2e7
7c83c02
 
 
 
 
016c2e7
7c83c02
 
 
 
 
016c2e7
7c83c02
 
54674a9
7c83c02
 
 
 
 
e2ca088
7c83c02
 
 
54674a9
7c83c02
 
 
 
 
 
782d9d4
7c83c02
2cd09c0
 
2dca59a
 
 
 
 
 
 
 
 
 
 
bc502f4
2dca59a
c6b230f
 
7c83c02
 
 
 
 
 
 
 
 
 
 
 
c6b230f
7c83c02
2cd09c0
7c83c02
7872dbb
7c83c02
 
8f302de
7c83c02
b1a17a2
 
 
 
 
 
 
 
 
 
 
54674a9
b1a17a2
 
 
 
 
 
 
 
 
 
54674a9
b1a17a2
 
 
 
 
 
 
 
 
 
 
54674a9
b1a17a2
 
 
 
 
 
 
 
 
 
54674a9
b1a17a2
 
 
 
 
 
 
 
 
 
 
 
 
 
21ddc2a
b1a17a2
e5b6cf6
b1a17a2
 
 
 
 
21ddc2a
b1a17a2
 
 
 
 
21ddc2a
b1a17a2
 
 
 
 
 
21ddc2a
b1a17a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285f1d2
b1a17a2
b156503
8f302de
b1a17a2
9cb6607
b156503
 
 
 
 
 
 
9cb6607
bca33c2
9cb6607
bca33c2
 
9cb6607
 
 
7c83c02
9cb6607
7c83c02
 
 
 
f2bc0a5
613696b
6e8f400
0227006
613696b
b1a17a2
8cb7546
d16cee2
 
 
 
21ddc2a
67109fc
d16cee2
adb0416
 
61181ce
d16cee2
23b311a
 
 
 
 
 
 
 
b156503
9cb6607
 
 
 
 
 
 
3a41fad
f146d30
 
 
 
3a41fad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import os

import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    BOTTOM_LOGO,
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    INTRODUCTION_TEXT_JP,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AddSpecialTokens,
    AutoEvalColumn,
    ModelType,
    NumFewShots,
    Precision,
    WeightType,
    fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)


# Space initialization
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO,
        local_dir=EVAL_RESULTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
    )
except Exception:
    restart_space()


# Searching and filtering


def filter_models(
    df: pd.DataFrame,
    type_query: list,
    size_query: list,
    precision_query: list,
    add_special_tokens_query: list,
    num_few_shots_query: list,
    show_deleted: bool,
    show_merges: bool,
    show_flagged: bool,
) -> pd.DataFrame:
    print(f"Initial df shape: {df.shape}")
    print(f"Initial df content:\n{df}")

    filtered_df = df

    # Model Type フィルタリング
    type_column = "T" if "T" in df.columns else "Type_"
    type_emoji = [t.split()[0] for t in type_query]
    filtered_df = df[df[type_column].isin(type_emoji)]
    print(f"After type filter: {filtered_df.shape}")

    # Precision フィルタリング
    filtered_df = filtered_df[filtered_df["Precision"].isin(precision_query + ["Unknown", "?"])]
    print(f"After precision filter: {filtered_df.shape}")

    # Model Size フィルタリング
    if "Unknown" in size_query:
        size_mask = filtered_df["#Params (B)"].isna() | (filtered_df["#Params (B)"] == 0)
    else:
        size_mask = filtered_df["#Params (B)"].apply(
            lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
        )
    filtered_df = filtered_df[size_mask]
    print(f"After size filter: {filtered_df.shape}")

    # Add Special Tokens フィルタリング
    filtered_df = filtered_df[filtered_df["Add Special Tokens"].isin(add_special_tokens_query + ["Unknown", "?"])]
    print(f"After add_special_tokens filter: {filtered_df.shape}")

    # Num Few Shots フィルタリング
    filtered_df = filtered_df[
        filtered_df["Few-shot"].astype(str).isin([str(x) for x in num_few_shots_query] + ["Unknown", "?"])
    ]
    print(f"After num_few_shots filter: {filtered_df.shape}")

    # Show deleted models フィルタリング
    if not show_deleted:
        filtered_df = filtered_df[filtered_df["Available on the hub"]]
    print(f"After show_deleted filter: {filtered_df.shape}")

    print("Filtered dataframe head:")
    print(filtered_df.head())
    return filtered_df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[df[AutoEvalColumn.dummy.name].str.contains(query, case=False)]


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    """Added by Abishek"""
    if not query:
        return filtered_df

    final_df = []
    queries = [q.strip() for q in query.split(";")]
    for _q in queries:
        _q = _q.strip()
        if _q != "":
            temp_filtered_df = search_table(filtered_df, _q)
            if len(temp_filtered_df) > 0:
                final_df.append(temp_filtered_df)
    if len(final_df) > 0:
        filtered_df = pd.concat(final_df)
        filtered_df = filtered_df.drop_duplicates(
            subset=[
                AutoEvalColumn.model.name,
                AutoEvalColumn.precision.name,
                AutoEvalColumn.revision.name,
            ]
        )
    return filtered_df


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,  # 'T'
        AutoEvalColumn.model.name,  # 'Model'
    ]

    # 'always_here_cols' を 'columns' から除外して重複を避ける
    columns = [c for c in columns if c not in always_here_cols]
    new_columns = (
        always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
    )

    # 重複を排除しつつ順序を維持
    seen = set()
    unique_columns = []
    for c in new_columns:
        if c not in seen:
            unique_columns.append(c)
            seen.add(c)

    # フィルタリングされたカラムでデータフレームを作成
    filtered_df = df[unique_columns]
    return filtered_df


def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    type_query: list,
    precision_query: str,
    size_query: list,
    add_special_tokens_query: list,
    num_few_shots_query: list,
    show_deleted: bool,
    show_merges: bool,
    show_flagged: bool,
    query: str,
):
    print(
        f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
    )
    print(f"hidden_df shape before filtering: {hidden_df.shape}")

    filtered_df = filter_models(
        hidden_df,
        type_query,
        size_query,
        precision_query,
        add_special_tokens_query,
        num_few_shots_query,
        show_deleted,
        show_merges,
        show_flagged,
    )
    print(f"filtered_df shape after filter_models: {filtered_df.shape}")

    filtered_df = filter_queries(query, filtered_df)
    print(f"filtered_df shape after filter_queries: {filtered_df.shape}")

    print(
        f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}"
    )
    print("Filtered dataframe head:")
    print(filtered_df.head())

    df = select_columns(filtered_df, columns)
    print(f"Final df shape: {df.shape}")
    print("Final dataframe head:")
    print(df.head())
    return df


def load_query(request: gr.Request):  # triggered only once at startup => read query parameter if it exists
    query = request.query_params.get("query") or ""
    return (
        query,
        query,
    )  # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed


# Prepare the dataframes

original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
    failed_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

leaderboard_df = filter_models(
    leaderboard_df,
    [t.to_str(" : ") for t in ModelType],
    list(NUMERIC_INTERVALS.keys()),
    [i.value.name for i in Precision],
    [i.value.name for i in AddSpecialTokens],
    [i.value.name for i in NumFewShots],
    False,
    False,
    False,
)

leaderboard_df_filtered = filter_models(
    leaderboard_df,
    [t.to_str(" : ") for t in ModelType],
    list(NUMERIC_INTERVALS.keys()),
    [i.value.name for i in Precision],
    [i.value.name for i in AddSpecialTokens],
    [i.value.name for i in NumFewShots],
    False,
    False,
    False,
)

# DataFrameの初期化部分のみを修正
initial_columns = ["T"] + [
    c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T"
]
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)


# Leaderboard demo

with gr.Blocks() as demo_leaderboard:
    with gr.Row():
        with gr.Column():
            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
                    show_label=False,
                    elem_id="search-bar",
                )
            with gr.Row():
                shown_columns = gr.CheckboxGroup(
                    label="Select columns to show",
                    choices=[
                        c.name
                        for c in fields(AutoEvalColumn)
                        if not c.hidden and not c.never_hidden  # and not c.dummy
                    ],
                    value=[
                        c.name
                        for c in fields(AutoEvalColumn)
                        if c.displayed_by_default and not c.hidden and not c.never_hidden
                    ],
                    elem_id="column-select",
                )
            with gr.Row():
                deleted_models_visibility = gr.Checkbox(label="Show private/deleted models", value=False)
                merged_models_visibility = gr.Checkbox(label="Show merges", value=False)
                flagged_models_visibility = gr.Checkbox(label="Show flagged models", value=False)
        with gr.Column(min_width=320):
            filter_columns_type = gr.CheckboxGroup(
                label="Model types",
                choices=[t.to_str() for t in ModelType],
                value=[t.to_str() for t in ModelType],
                elem_id="filter-columns-type",
            )
            filter_columns_precision = gr.CheckboxGroup(
                label="Precision",
                choices=[i.value.name for i in Precision],
                value=[i.value.name for i in Precision],
                elem_id="filter-columns-precision",
            )
            filter_columns_size = gr.CheckboxGroup(
                label="Model sizes (in billions of parameters)",
                choices=list(NUMERIC_INTERVALS.keys()),
                value=list(NUMERIC_INTERVALS.keys()),
                elem_id="filter-columns-size",
            )
            filter_columns_add_special_tokens = gr.CheckboxGroup(
                label="Add Special Tokens",
                choices=[i.value.name for i in AddSpecialTokens],
                value=[i.value.name for i in AddSpecialTokens],
                elem_id="filter-columns-add-special-tokens",
            )
            filter_columns_num_few_shots = gr.CheckboxGroup(
                label="Num Few Shots",
                choices=[i.value.name for i in NumFewShots],
                value=[i.value.name for i in NumFewShots],
                elem_id="filter-columns-num-few-shots",
            )

    # DataFrameコンポーネントの初期化
    leaderboard_table = gr.Dataframe(
        value=leaderboard_df_filtered,
        headers=initial_columns,
        datatype=TYPES,
        elem_id="leaderboard-table",
        interactive=False,
        visible=True,
    )

    # Dummy leaderboard for handling the case when the user uses backspace key
    hidden_leaderboard_table_for_search = gr.Dataframe(
        value=original_df[COLS],
        headers=COLS,
        datatype=TYPES,
        visible=False,
    )

    # Define a hidden component that will trigger a reload only if a query parameter has been set
    hidden_search_bar = gr.Textbox(value="", visible=False)

    gr.on(
        triggers=[
            hidden_search_bar.change,
            shown_columns.change,
            filter_columns_type.change,
            filter_columns_precision.change,
            filter_columns_size.change,
            filter_columns_add_special_tokens.change,
            filter_columns_num_few_shots.change,
            deleted_models_visibility.change,
            merged_models_visibility.change,
            flagged_models_visibility.change,
            search_bar.submit,
        ],
        fn=update_table,
        inputs=[
            hidden_leaderboard_table_for_search,
            shown_columns,
            filter_columns_type,
            filter_columns_precision,
            filter_columns_size,
            filter_columns_add_special_tokens,
            filter_columns_num_few_shots,
            deleted_models_visibility,
            merged_models_visibility,
            flagged_models_visibility,
            search_bar,
        ],
        outputs=leaderboard_table,
    )

    # Check query parameter once at startup and update search bar + hidden component
    demo_leaderboard.load(fn=load_query, outputs=[search_bar, hidden_search_bar])


# Submission demo

with gr.Blocks() as demo_submission:
    with gr.Column():
        with gr.Row():
            gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

        with gr.Column():
            with gr.Accordion(
                f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
                open=False,
            ):
                with gr.Row():
                    finished_eval_table = gr.Dataframe(
                        value=finished_eval_queue_df,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )
            with gr.Accordion(
                f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
                open=False,
            ):
                with gr.Row():
                    running_eval_table = gr.Dataframe(
                        value=running_eval_queue_df,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )

            with gr.Accordion(
                f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                open=False,
            ):
                with gr.Row():
                    pending_eval_table = gr.Dataframe(
                        value=pending_eval_queue_df,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )
            with gr.Accordion(
                f"❎ Failed Evaluation Queue ({len(failed_eval_queue_df)})",
                open=False,
            ):
                with gr.Row():
                    failed_eval_table = gr.Dataframe(
                        value=failed_eval_queue_df,
                        headers=EVAL_COLS,
                        datatype=EVAL_TYPES,
                        row_count=5,
                    )
    with gr.Row():
        gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")

    with gr.Row():
        with gr.Column():
            model_name_textbox = gr.Textbox(label="Model name")
            revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
            model_type = gr.Dropdown(
                label="Model type",
                choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                multiselect=False,
                value=lambda: None,
            )

        with gr.Column():
            precision = gr.Dropdown(
                label="Precision",
                choices=[i.value.name for i in Precision if i != Precision.Unknown],
                multiselect=False,
                value="float16",
            )
            weight_type = gr.Dropdown(
                label="Weights type",
                choices=[i.value.name for i in WeightType],
                multiselect=False,
                value="Original",
            )
            base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
            add_special_tokens = gr.Dropdown(
                label="AddSpecialTokens",
                choices=[i.value.name for i in AddSpecialTokens if i != AddSpecialTokens.Unknown],
                multiselect=False,
                value="False",
            )

    submit_button = gr.Button("Submit Eval")
    submission_result = gr.Markdown()
    submit_button.click(
        add_new_eval,
        [
            model_name_textbox,
            base_model_name_textbox,
            revision_name_textbox,
            precision,
            weight_type,
            model_type,
            add_special_tokens,
        ],
        submission_result,
    )


# Main demo


def set_default_language(request: gr.Request) -> gr.Dropdown:
    if request.headers["Accept-Language"].split(",")[0].lower().startswith("ja"):
        return gr.Dropdown(value="🇯🇵 JP")
    else:
        return gr.Dropdown(value="🇺🇸 EN")


def update_language(language: str) -> gr.Markdown:
    if language == "🇯🇵 JP":
        return gr.Markdown(value=INTRODUCTION_TEXT_JP)
    else:
        return gr.Markdown(value=INTRODUCTION_TEXT)


with gr.Blocks(css=custom_css, css_paths="style.css", theme=gr.themes.Base()) as demo:
    gr.HTML(TITLE)
    introduction_text = gr.Markdown(INTRODUCTION_TEXT_JP, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            demo_leaderboard.render()

        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            demo_submission.render()

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                label=CITATION_BUTTON_LABEL,
                value=CITATION_BUTTON_TEXT,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )
    gr.HTML(BOTTOM_LOGO)

    language = gr.Dropdown(
        choices=["🇯🇵 JP", "🇺🇸 EN"],
        value="🇯🇵 JP",
        elem_classes="language-selector",
        show_label=False,
        container=False,
    )

    demo.load(fn=set_default_language, outputs=language)
    language.change(
        fn=update_language,
        inputs=language,
        outputs=introduction_text,
        api_name=False,
    )

if __name__ == "__main__":
    if os.getenv("SPACE_ID"):
        scheduler = BackgroundScheduler()
        scheduler.add_job(restart_space, "interval", seconds=1800)
        scheduler.start()
    demo.queue(default_concurrency_limit=40).launch()