Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 18,636 Bytes
f146d30 9346f1c 4596a70 2a5f9fb 1ffc326 0f09631 8c49cb6 9cb6607 8c49cb6 976f398 df66f6e 0f09631 df66f6e 9c999fc 0f09631 df66f6e 6b6811b df66f6e 8c49cb6 57cc619 10f9b3c 50df158 d084b26 57cc619 5904ab6 d084b26 285f1d2 d084b26 285f1d2 d084b26 2be444d 57cc619 016c2e7 50419e9 016c2e7 50419e9 2a731a3 9c999fc 016c2e7 50419e9 57cc619 50419e9 57cc619 50419e9 57cc619 50419e9 4a39b37 50419e9 e36d99d 50419e9 96fd777 50419e9 016c2e7 6783fa0 016c2e7 3c16bf3 50419e9 31ca7f6 50419e9 047f6fc 285f1d2 016c2e7 da97add 285f1d2 016c2e7 57cc619 da97add 047f6fc 6783fa0 57cc619 da97add e647d43 d046801 da97add 8604d8b 016c2e7 e647d43 50419e9 285f1d2 50419e9 285f1d2 50419e9 3437d98 50419e9 3437d98 50419e9 c163b21 50419e9 3437d98 50419e9 1ea4467 3437d98 50419e9 016c2e7 57cc619 7ec9c70 676db2b d1583a6 0556b59 285f1d2 7644705 285f1d2 676db2b 285f1d2 676db2b 8f302de 7c83c02 766a705 21ddc2a 766a705 7c83c02 ab0d007 7c83c02 aa3bf1f 7c83c02 aa3bf1f 7c83c02 016c2e7 7c83c02 016c2e7 7c83c02 016c2e7 7c83c02 54674a9 7c83c02 e2ca088 7c83c02 54674a9 7c83c02 782d9d4 7c83c02 2cd09c0 2dca59a bc502f4 2dca59a c6b230f 7c83c02 c6b230f 7c83c02 2cd09c0 7c83c02 7872dbb 7c83c02 8f302de 7c83c02 b1a17a2 54674a9 b1a17a2 54674a9 b1a17a2 54674a9 b1a17a2 54674a9 b1a17a2 21ddc2a b1a17a2 e5b6cf6 b1a17a2 21ddc2a b1a17a2 21ddc2a b1a17a2 21ddc2a b1a17a2 285f1d2 b1a17a2 b156503 8f302de b1a17a2 9cb6607 b156503 9cb6607 bca33c2 9cb6607 bca33c2 9cb6607 7c83c02 9cb6607 7c83c02 f2bc0a5 613696b 6e8f400 0227006 613696b b1a17a2 8cb7546 d16cee2 21ddc2a 67109fc d16cee2 adb0416 61181ce d16cee2 23b311a b156503 9cb6607 3a41fad f146d30 3a41fad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import os
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
BOTTOM_LOGO,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
INTRODUCTION_TEXT_JP,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AddSpecialTokens,
AutoEvalColumn,
ModelType,
NumFewShots,
Precision,
WeightType,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
# Space initialization
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
)
except Exception:
restart_space()
# Searching and filtering
def filter_models(
df: pd.DataFrame,
type_query: list,
size_query: list,
precision_query: list,
add_special_tokens_query: list,
num_few_shots_query: list,
show_deleted: bool,
show_merges: bool,
show_flagged: bool,
) -> pd.DataFrame:
print(f"Initial df shape: {df.shape}")
print(f"Initial df content:\n{df}")
filtered_df = df
# Model Type フィルタリング
type_column = "T" if "T" in df.columns else "Type_"
type_emoji = [t.split()[0] for t in type_query]
filtered_df = df[df[type_column].isin(type_emoji)]
print(f"After type filter: {filtered_df.shape}")
# Precision フィルタリング
filtered_df = filtered_df[filtered_df["Precision"].isin(precision_query + ["Unknown", "?"])]
print(f"After precision filter: {filtered_df.shape}")
# Model Size フィルタリング
if "Unknown" in size_query:
size_mask = filtered_df["#Params (B)"].isna() | (filtered_df["#Params (B)"] == 0)
else:
size_mask = filtered_df["#Params (B)"].apply(
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
)
filtered_df = filtered_df[size_mask]
print(f"After size filter: {filtered_df.shape}")
# Add Special Tokens フィルタリング
filtered_df = filtered_df[filtered_df["Add Special Tokens"].isin(add_special_tokens_query + ["Unknown", "?"])]
print(f"After add_special_tokens filter: {filtered_df.shape}")
# Num Few Shots フィルタリング
filtered_df = filtered_df[
filtered_df["Few-shot"].astype(str).isin([str(x) for x in num_few_shots_query] + ["Unknown", "?"])
]
print(f"After num_few_shots filter: {filtered_df.shape}")
# Show deleted models フィルタリング
if not show_deleted:
filtered_df = filtered_df[filtered_df["Available on the hub"]]
print(f"After show_deleted filter: {filtered_df.shape}")
print("Filtered dataframe head:")
print(filtered_df.head())
return filtered_df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[df[AutoEvalColumn.dummy.name].str.contains(query, case=False)]
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
"""Added by Abishek"""
if not query:
return filtered_df
final_df = []
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[
AutoEvalColumn.model.name,
AutoEvalColumn.precision.name,
AutoEvalColumn.revision.name,
]
)
return filtered_df
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name, # 'T'
AutoEvalColumn.model.name, # 'Model'
]
# 'always_here_cols' を 'columns' から除外して重複を避ける
columns = [c for c in columns if c not in always_here_cols]
new_columns = (
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
)
# 重複を排除しつつ順序を維持
seen = set()
unique_columns = []
for c in new_columns:
if c not in seen:
unique_columns.append(c)
seen.add(c)
# フィルタリングされたカラムでデータフレームを作成
filtered_df = df[unique_columns]
return filtered_df
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
add_special_tokens_query: list,
num_few_shots_query: list,
show_deleted: bool,
show_merges: bool,
show_flagged: bool,
query: str,
):
print(
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
)
print(f"hidden_df shape before filtering: {hidden_df.shape}")
filtered_df = filter_models(
hidden_df,
type_query,
size_query,
precision_query,
add_special_tokens_query,
num_few_shots_query,
show_deleted,
show_merges,
show_flagged,
)
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
filtered_df = filter_queries(query, filtered_df)
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
print(
f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}"
)
print("Filtered dataframe head:")
print(filtered_df.head())
df = select_columns(filtered_df, columns)
print(f"Final df shape: {df.shape}")
print("Final dataframe head:")
print(df.head())
return df
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
query = request.query_params.get("query") or ""
return (
query,
query,
) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
# Prepare the dataframes
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
failed_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
leaderboard_df = filter_models(
leaderboard_df,
[t.to_str(" : ") for t in ModelType],
list(NUMERIC_INTERVALS.keys()),
[i.value.name for i in Precision],
[i.value.name for i in AddSpecialTokens],
[i.value.name for i in NumFewShots],
False,
False,
False,
)
leaderboard_df_filtered = filter_models(
leaderboard_df,
[t.to_str(" : ") for t in ModelType],
list(NUMERIC_INTERVALS.keys()),
[i.value.name for i in Precision],
[i.value.name for i in AddSpecialTokens],
[i.value.name for i in NumFewShots],
False,
False,
False,
)
# DataFrameの初期化部分のみを修正
initial_columns = ["T"] + [
c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T"
]
leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns)
# Leaderboard demo
with gr.Blocks() as demo_leaderboard:
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
label="Select columns to show",
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden # and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
elem_id="column-select",
)
with gr.Row():
deleted_models_visibility = gr.Checkbox(label="Show private/deleted models", value=False)
merged_models_visibility = gr.Checkbox(label="Show merges", value=False)
flagged_models_visibility = gr.Checkbox(label="Show flagged models", value=False)
with gr.Column(min_width=320):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
elem_id="filter-columns-size",
)
filter_columns_add_special_tokens = gr.CheckboxGroup(
label="Add Special Tokens",
choices=[i.value.name for i in AddSpecialTokens],
value=[i.value.name for i in AddSpecialTokens],
elem_id="filter-columns-add-special-tokens",
)
filter_columns_num_few_shots = gr.CheckboxGroup(
label="Num Few Shots",
choices=[i.value.name for i in NumFewShots],
value=[i.value.name for i in NumFewShots],
elem_id="filter-columns-num-few-shots",
)
# DataFrameコンポーネントの初期化
leaderboard_table = gr.Dataframe(
value=leaderboard_df_filtered,
headers=initial_columns,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
# Define a hidden component that will trigger a reload only if a query parameter has been set
hidden_search_bar = gr.Textbox(value="", visible=False)
gr.on(
triggers=[
hidden_search_bar.change,
shown_columns.change,
filter_columns_type.change,
filter_columns_precision.change,
filter_columns_size.change,
filter_columns_add_special_tokens.change,
filter_columns_num_few_shots.change,
deleted_models_visibility.change,
merged_models_visibility.change,
flagged_models_visibility.change,
search_bar.submit,
],
fn=update_table,
inputs=[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
filter_columns_add_special_tokens,
filter_columns_num_few_shots,
deleted_models_visibility,
merged_models_visibility,
flagged_models_visibility,
search_bar,
],
outputs=leaderboard_table,
)
# Check query parameter once at startup and update search bar + hidden component
demo_leaderboard.load(fn=load_query, outputs=[search_bar, hidden_search_bar])
# Submission demo
with gr.Blocks() as demo_submission:
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"❎ Failed Evaluation Queue ({len(failed_eval_queue_df)})",
open=False,
):
with gr.Row():
failed_eval_table = gr.Dataframe(
value=failed_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
label="Model type",
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
multiselect=False,
value=lambda: None,
)
with gr.Column():
precision = gr.Dropdown(
label="Precision",
choices=[i.value.name for i in Precision if i != Precision.Unknown],
multiselect=False,
value="float16",
)
weight_type = gr.Dropdown(
label="Weights type",
choices=[i.value.name for i in WeightType],
multiselect=False,
value="Original",
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
add_special_tokens = gr.Dropdown(
label="AddSpecialTokens",
choices=[i.value.name for i in AddSpecialTokens if i != AddSpecialTokens.Unknown],
multiselect=False,
value="False",
)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
add_special_tokens,
],
submission_result,
)
# Main demo
def set_default_language(request: gr.Request) -> gr.Dropdown:
if request.headers["Accept-Language"].split(",")[0].lower().startswith("ja"):
return gr.Dropdown(value="🇯🇵 JP")
else:
return gr.Dropdown(value="🇺🇸 EN")
def update_language(language: str) -> gr.Markdown:
if language == "🇯🇵 JP":
return gr.Markdown(value=INTRODUCTION_TEXT_JP)
else:
return gr.Markdown(value=INTRODUCTION_TEXT)
with gr.Blocks(css=custom_css, css_paths="style.css", theme=gr.themes.Base()) as demo:
gr.HTML(TITLE)
introduction_text = gr.Markdown(INTRODUCTION_TEXT_JP, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
demo_leaderboard.render()
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
demo_submission.render()
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
label=CITATION_BUTTON_LABEL,
value=CITATION_BUTTON_TEXT,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
gr.HTML(BOTTOM_LOGO)
language = gr.Dropdown(
choices=["🇯🇵 JP", "🇺🇸 EN"],
value="🇯🇵 JP",
elem_classes="language-selector",
show_label=False,
container=False,
)
demo.load(fn=set_default_language, outputs=language)
language.change(
fn=update_language,
inputs=language,
outputs=introduction_text,
api_name=False,
)
if __name__ == "__main__":
if os.getenv("SPACE_ID"):
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|