Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,379 Bytes
df66f6e 2a5f9fb df66f6e c58b612 e1d8ae4 b5474e9 2a5f9fb 976f398 2a5f9fb b5474e9 2a5f9fb 3bdbd04 2a5f9fb 976f398 c58b612 e1d8ae4 c58b612 e1d8ae4 c58b612 e1d8ae4 c58b612 9d22eee 976f398 2a5f9fb b246f21 027390b 2a5f9fb c15e77e 3bdbd04 c58b612 b246f21 e1d8ae4 2a5f9fb 976f398 69f0225 976f398 2a5f9fb e1d8ae4 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import json
import os
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.display.utils import Version
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, TOKEN, VLLM_CURRENT_VERSION
from src.submission.check_validity import already_submitted_models, check_model_card, get_model_size, is_model_on_hub
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
revision: str,
precision: str,
model_type: str,
add_special_tokens: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
current_version = Version.v1_4_1.value.name
current_vllm_version = VLLM_CURRENT_VERSION
# バージョン情報を含めた重複チェック
submission_id = f"{model}_{precision}_{add_special_tokens}_{current_version}_{current_vllm_version}"
if submission_id in REQUESTED_MODELS:
return styled_warning(
f"This model has already been evaluated with llm-jp-eval version {current_version} and vllm version {current_vllm_version}"
)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
model_on_hub, error, model_config = is_model_on_hub(
model_name=model, revision=revision, token=TOKEN, test_tokenizer=True
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"revision": revision,
"precision": precision,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
"private": False,
"add_special_tokens": add_special_tokens,
"llm_jp_eval_version": current_version,
"architecture": architecture,
"vllm_version": current_vllm_version,
}
# Check for duplicate submission
if f"{model}_{precision}_{add_special_tokens}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = (
f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{add_special_tokens}_{current_vllm_version}.json"
)
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
|