hysts's picture
hysts HF staff
Update
245d717
raw
history blame
3.98 kB
import json
import os
import datasets
import pandas as pd
from src.about import Tasks
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
# The values of these columns are in the range of 0-100
# We normalize them to 0-1
COLUMNS_TO_NORMALIZE = [
"ALT E to J BLEU",
"ALT J to E BLEU",
"WikiCorpus E to J BLEU",
"WikiCorpus J to E BLEU",
"XL-Sum JA BLEU",
"XL-Sum ROUGE1",
"XL-Sum ROUGE2",
"XL-Sum ROUGE-Lsum",
]
def get_leaderboard_df(contents_repo: str, cols: list[str], benchmark_cols: list[str]) -> pd.DataFrame:
df = datasets.load_dataset(contents_repo, split="train").to_pandas()
df["Model"] = df["model"].map(make_clickable_model)
df["T"] = df["model_type"].map(lambda x: x.split(":")[0].strip())
df = df.rename(columns={task.value.metric: task.value.col_name for task in Tasks})
df = df.rename(
columns={
"architecture": "Architecture",
"weight_type": "Weight type",
"precision": "Precision",
"license": "Hub License",
"params": "#Params (B)",
"likes": "Hub ❤️",
"revision": "Revision",
"num_few_shot": "Few-shot",
"add_special_tokens": "Add Special Tokens",
"llm_jp_eval_version": "llm-jp-eval version",
"vllm_version": "vllm version",
"model_type": "Type",
"model": "model_name_for_query",
}
)
# Add a row ID column
df[AutoEvalColumn.row_id.name] = range(len(df))
# Normalize the columns
available_columns_to_normalize = [col for col in COLUMNS_TO_NORMALIZE if col in df.columns]
df[available_columns_to_normalize] = df[available_columns_to_normalize] / 100
df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
df = df[cols].round(decimals=4)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_evaluation_queue_df(save_path: str, cols: list[str]) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
failed_list = [e for e in all_evals if e["status"] == "FAILED"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
df_failed = pd.DataFrame.from_records(failed_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols], df_failed[cols]