hysts's picture
hysts HF staff
Apply pre-commit
b5474e9
raw
history blame
9.25 kB
import glob
import json
import os
from dataclasses import dataclass
from decimal import Decimal
import dateutil
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, WeightType
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
# precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
precision: str = "Unknown"
# model_type: str = "Unknown"
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
num_few_shots: str = "0"
add_special_tokens: str = ""
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
metainfo = config.get("metainfo", {})
model_config = config.get("model", {})
# Get model type from metainfo
# model_type_str = metainfo.get("model_type", "")
# model_type = ModelType.from_str(model_type_str)
# model_type = metainfo.get("model_type", "Unknown")
# Get num_few_shots from metainfo
num_few_shots = str(metainfo.get("num_few_shots", 0))
# Precision
# precision = Precision.from_str(config.get("dtype"))
precision = model_config.get("dtype", "Unknown")
# Add Special Tokens
add_special_tokens = str(
config.get("pipeline_kwargs", {"add_special_tokens": "Unknown"}).get("add_special_tokens")
)
# Get model and org
# org_and_model = config.get("model_name", config.get("offline_inference").get("model_name", None))
org_and_model = config.get("model_name", config.get("offline_inference", {}).get("model_name", "Unknown"))
org_and_model = org_and_model.split("/", 1)
# org_and_modelがリストの場合、"/"で結合
if isinstance(org_and_model, list):
full_model = "/".join(org_and_model)
else:
full_model = org_and_model
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
# result_key = f"{model}_{precision.value.name}"
result_key = f"{model}_{precision}_({num_few_shots}shots)_{add_special_tokens}"
else:
org = org_and_model[0]
model = org_and_model[1]
# result_key = f"{org}_{model}_{precision.value.name}"
result_key = f"{model}_{precision}_({num_few_shots}shots)_{add_special_tokens}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
if "scores" not in data:
raise KeyError(f"'scores' key not found in JSON file: {json_filepath}")
scores = data["scores"]
results = {}
for task in Tasks:
task_value = task.value
score = scores.get(task_value.metric)
results[task_value.metric] = score
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
num_few_shots=num_few_shots,
add_special_tokens=add_special_tokens,
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.dummy.name: self.full_model,
AutoEvalColumn.revision.name: self.revision,
# AutoEvalColumn.average.name: None,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
AutoEvalColumn.num_few_shots.name: self.num_few_shots,
AutoEvalColumn.add_special_tokens.name: self.add_special_tokens,
}
# for task in Tasks:
# task_value = task.value
# data_dict[task_value.col_name] = self.results.get(task_value.benchmark, None)
for task in Tasks:
task_value = task.value
value = self.results.get(task_value.metric)
data_dict[task_value.col_name] = Decimal(value)
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
# print(f"Processing file: {model_result_filepath}")
# print(f"Eval result: {eval_result.to_dict()}")
return results