Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update src/populate.py
Browse files- src/populate.py +4 -49
src/populate.py
CHANGED
@@ -8,74 +8,29 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
11 |
-
# def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
-
# """Creates a dataframe from all the individual experiment results"""
|
13 |
-
# raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
-
# all_data_json = [v.to_dict() for v in raw_data]
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# df = pd.DataFrame.from_records(all_data_json)
|
19 |
-
# score_cols = [
|
20 |
-
# 'ALT E to J BLEU', 'ALT J to E BLEU', 'WikiCorpus E to J BLEU', 'WikiCorpus J to E BLEU',
|
21 |
-
# 'XL-Sum JA BLEU', 'XL-Sum ROUGE1', 'XL-Sum ROUGE2', 'XL-Sum ROUGE-Lsum'
|
22 |
-
# ]
|
23 |
-
|
24 |
-
# existing_score_cols = [col for col in score_cols if col in df.columns]
|
25 |
-
# print(f"Existing score columns: {existing_score_cols}")
|
26 |
-
|
27 |
-
# # スコア列を100で割り、.4f形式でフォーマット
|
28 |
-
# df[existing_score_cols] = (df[existing_score_cols] / 100).applymap(lambda x: f'{x:.4f}')
|
29 |
-
# df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
|
30 |
-
# df = df[cols].round(decimals=2)
|
31 |
-
|
32 |
-
# # filter out if any of the benchmarks have not been produced
|
33 |
-
# df = df[has_no_nan_values(df, benchmark_cols)]
|
34 |
-
# return df
|
35 |
-
|
36 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
37 |
"""Creates a dataframe from all the individual experiment results"""
|
38 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
39 |
-
|
40 |
-
# デバッグ: Raw data の内容を確認
|
41 |
-
print(f"Raw data before conversion: {raw_data}")
|
42 |
-
|
43 |
all_data_json = [v.to_dict() for v in raw_data]
|
44 |
|
45 |
-
|
|
|
46 |
df = pd.DataFrame.from_records(all_data_json)
|
47 |
-
print(f"Initial DataFrame: {df}")
|
48 |
-
|
49 |
score_cols = [
|
50 |
'ALT E to J BLEU', 'ALT J to E BLEU', 'WikiCorpus E to J BLEU', 'WikiCorpus J to E BLEU',
|
51 |
'XL-Sum JA BLEU', 'XL-Sum ROUGE1', 'XL-Sum ROUGE2', 'XL-Sum ROUGE-Lsum'
|
52 |
]
|
53 |
|
54 |
-
# デバッグ: 存在するスコア列を確認
|
55 |
existing_score_cols = [col for col in score_cols if col in df.columns]
|
56 |
print(f"Existing score columns: {existing_score_cols}")
|
57 |
|
58 |
# スコア列を100で割り、.4f形式でフォーマット
|
59 |
df[existing_score_cols] = (df[existing_score_cols] / 100).applymap(lambda x: f'{x:.4f}')
|
60 |
-
|
61 |
-
# デバッグ: スコア調整後のデータフレームを確認
|
62 |
-
print(f"DataFrame after score adjustment: {df}")
|
63 |
-
|
64 |
-
# ソート
|
65 |
df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
|
66 |
-
|
67 |
-
# デバッグ: ソート後のデータフレームを確認
|
68 |
-
print(f"Sorted DataFrame: {df}")
|
69 |
-
|
70 |
-
# NaNを持つ行を除外
|
71 |
-
df = df[has_no_nan_values(df, benchmark_cols)]
|
72 |
-
|
73 |
-
# デバッグ: NaNフィルタリング後のデータフレームを確認
|
74 |
-
print(f"Final DataFrame after NaN filtering: {df}")
|
75 |
-
|
76 |
-
# 必要なカラムのみに絞り込む
|
77 |
df = df[cols].round(decimals=2)
|
78 |
|
|
|
|
|
79 |
return df
|
80 |
|
81 |
|
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
|
|
|
|
|
|
|
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
+
|
17 |
+
|
18 |
df = pd.DataFrame.from_records(all_data_json)
|
|
|
|
|
19 |
score_cols = [
|
20 |
'ALT E to J BLEU', 'ALT J to E BLEU', 'WikiCorpus E to J BLEU', 'WikiCorpus J to E BLEU',
|
21 |
'XL-Sum JA BLEU', 'XL-Sum ROUGE1', 'XL-Sum ROUGE2', 'XL-Sum ROUGE-Lsum'
|
22 |
]
|
23 |
|
|
|
24 |
existing_score_cols = [col for col in score_cols if col in df.columns]
|
25 |
print(f"Existing score columns: {existing_score_cols}")
|
26 |
|
27 |
# スコア列を100で割り、.4f形式でフォーマット
|
28 |
df[existing_score_cols] = (df[existing_score_cols] / 100).applymap(lambda x: f'{x:.4f}')
|
|
|
|
|
|
|
|
|
|
|
29 |
df = df.sort_values(by=[AutoEvalColumn.AVG.name], ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
df = df[cols].round(decimals=2)
|
31 |
|
32 |
+
# filter out if any of the benchmarks have not been produced
|
33 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
34 |
return df
|
35 |
|
36 |
|