Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clean up
Browse files
app.py
CHANGED
@@ -58,7 +58,6 @@ def restart_space() -> None:
|
|
58 |
|
59 |
# Space initialization
|
60 |
try:
|
61 |
-
print(EVAL_REQUESTS_PATH)
|
62 |
snapshot_download(
|
63 |
repo_id=QUEUE_REPO,
|
64 |
local_dir=EVAL_REQUESTS_PATH,
|
@@ -96,17 +95,12 @@ def filter_models(
|
|
96 |
version_query: list[str],
|
97 |
vllm_query: list[str],
|
98 |
) -> pd.DataFrame:
|
99 |
-
print(f"Initial df shape: {df.shape}")
|
100 |
-
print(f"Initial df content:\n{df}")
|
101 |
-
|
102 |
# Filter by model type
|
103 |
type_emoji = [t.split()[0] for t in type_query]
|
104 |
df = df[df["T"].isin(type_emoji)]
|
105 |
-
print(f"After type filter: {df.shape}")
|
106 |
|
107 |
# Filter by precision
|
108 |
df = df[df["Precision"].isin(precision_query)]
|
109 |
-
print(f"After precision filter: {df.shape}")
|
110 |
|
111 |
# Filter by model size
|
112 |
# Note: When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0),
|
@@ -118,26 +112,19 @@ def filter_models(
|
|
118 |
if "Unknown" in size_query:
|
119 |
size_mask |= df["#Params (B)"].isna() | (df["#Params (B)"] == 0)
|
120 |
df = df[size_mask]
|
121 |
-
print(f"After size filter: {df.shape}")
|
122 |
|
123 |
# Filter by special tokens setting
|
124 |
df = df[df["Add Special Tokens"].isin(add_special_tokens_query)]
|
125 |
-
print(f"After add_special_tokens filter: {df.shape}")
|
126 |
|
127 |
# Filter by number of few-shot examples
|
128 |
df = df[df["Few-shot"].astype(str).isin(num_few_shots_query)]
|
129 |
-
print(f"After num_few_shots filter: {df.shape}")
|
130 |
|
131 |
# Filter by evaluator version
|
132 |
df = df[df["llm-jp-eval version"].isin(version_query)]
|
133 |
-
print(f"After version filter: {df.shape}")
|
134 |
|
135 |
# Filter by vLLM version
|
136 |
df = df[df["vllm version"].isin(vllm_query)]
|
137 |
-
print(f"After vllm version filter: {df.shape}")
|
138 |
|
139 |
-
print("Filtered dataframe head:")
|
140 |
-
print(df.head())
|
141 |
return df
|
142 |
|
143 |
|
@@ -190,10 +177,6 @@ def update_table(
|
|
190 |
*columns,
|
191 |
) -> pd.DataFrame:
|
192 |
columns = [item for column in columns for item in column]
|
193 |
-
print(
|
194 |
-
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
|
195 |
-
)
|
196 |
-
|
197 |
filtered_df = filter_models(
|
198 |
ORIGINAL_DF,
|
199 |
type_query,
|
@@ -204,21 +187,9 @@ def update_table(
|
|
204 |
version_query,
|
205 |
vllm_query,
|
206 |
)
|
207 |
-
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
208 |
-
|
209 |
filtered_df = search_models_by_multiple_names(filtered_df, query)
|
210 |
-
print(f"filtered_df shape after search_models_by_multiple_names: {filtered_df.shape}")
|
211 |
-
|
212 |
-
print(
|
213 |
-
f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}"
|
214 |
-
)
|
215 |
-
print("Filtered dataframe head:")
|
216 |
-
print(filtered_df.head())
|
217 |
|
218 |
df = select_columns(filtered_df, columns)
|
219 |
-
print(f"Final df shape: {df.shape}")
|
220 |
-
print("Final dataframe head:")
|
221 |
-
print(df.head())
|
222 |
return df
|
223 |
|
224 |
|
|
|
58 |
|
59 |
# Space initialization
|
60 |
try:
|
|
|
61 |
snapshot_download(
|
62 |
repo_id=QUEUE_REPO,
|
63 |
local_dir=EVAL_REQUESTS_PATH,
|
|
|
95 |
version_query: list[str],
|
96 |
vllm_query: list[str],
|
97 |
) -> pd.DataFrame:
|
|
|
|
|
|
|
98 |
# Filter by model type
|
99 |
type_emoji = [t.split()[0] for t in type_query]
|
100 |
df = df[df["T"].isin(type_emoji)]
|
|
|
101 |
|
102 |
# Filter by precision
|
103 |
df = df[df["Precision"].isin(precision_query)]
|
|
|
104 |
|
105 |
# Filter by model size
|
106 |
# Note: When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0),
|
|
|
112 |
if "Unknown" in size_query:
|
113 |
size_mask |= df["#Params (B)"].isna() | (df["#Params (B)"] == 0)
|
114 |
df = df[size_mask]
|
|
|
115 |
|
116 |
# Filter by special tokens setting
|
117 |
df = df[df["Add Special Tokens"].isin(add_special_tokens_query)]
|
|
|
118 |
|
119 |
# Filter by number of few-shot examples
|
120 |
df = df[df["Few-shot"].astype(str).isin(num_few_shots_query)]
|
|
|
121 |
|
122 |
# Filter by evaluator version
|
123 |
df = df[df["llm-jp-eval version"].isin(version_query)]
|
|
|
124 |
|
125 |
# Filter by vLLM version
|
126 |
df = df[df["vllm version"].isin(vllm_query)]
|
|
|
127 |
|
|
|
|
|
128 |
return df
|
129 |
|
130 |
|
|
|
177 |
*columns,
|
178 |
) -> pd.DataFrame:
|
179 |
columns = [item for column in columns for item in column]
|
|
|
|
|
|
|
|
|
180 |
filtered_df = filter_models(
|
181 |
ORIGINAL_DF,
|
182 |
type_query,
|
|
|
187 |
version_query,
|
188 |
vllm_query,
|
189 |
)
|
|
|
|
|
190 |
filtered_df = search_models_by_multiple_names(filtered_df, query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
193 |
return df
|
194 |
|
195 |
|