Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update
Browse files
app.py
CHANGED
@@ -99,17 +99,17 @@ def filter_models(
|
|
99 |
print(f"Initial df shape: {df.shape}")
|
100 |
print(f"Initial df content:\n{df}")
|
101 |
|
102 |
-
#
|
103 |
type_emoji = [t.split()[0] for t in type_query]
|
104 |
df = df[df["T"].isin(type_emoji)]
|
105 |
print(f"After type filter: {df.shape}")
|
106 |
|
107 |
-
#
|
108 |
df = df[df["Precision"].isin(precision_query)]
|
109 |
print(f"After precision filter: {df.shape}")
|
110 |
|
111 |
-
#
|
112 |
-
# When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0)
|
113 |
if len(df) > 0:
|
114 |
size_mask = df["#Params (B)"].apply(
|
115 |
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
|
@@ -119,19 +119,19 @@ def filter_models(
|
|
119 |
df = df[size_mask]
|
120 |
print(f"After size filter: {df.shape}")
|
121 |
|
122 |
-
#
|
123 |
df = df[df["Add Special Tokens"].isin(add_special_tokens_query)]
|
124 |
print(f"After add_special_tokens filter: {df.shape}")
|
125 |
|
126 |
-
#
|
127 |
df = df[df["Few-shot"].astype(str).isin(num_few_shots_query)]
|
128 |
print(f"After num_few_shots filter: {df.shape}")
|
129 |
|
130 |
-
#
|
131 |
df = df[df["llm-jp-eval version"].isin(version_query)]
|
132 |
print(f"After version filter: {df.shape}")
|
133 |
|
134 |
-
#
|
135 |
df = df[df["vllm version"].isin(vllm_query)]
|
136 |
print(f"After vllm version filter: {df.shape}")
|
137 |
|
|
|
99 |
print(f"Initial df shape: {df.shape}")
|
100 |
print(f"Initial df content:\n{df}")
|
101 |
|
102 |
+
# Filter by model type
|
103 |
type_emoji = [t.split()[0] for t in type_query]
|
104 |
df = df[df["T"].isin(type_emoji)]
|
105 |
print(f"After type filter: {df.shape}")
|
106 |
|
107 |
+
# Filter by precision
|
108 |
df = df[df["Precision"].isin(precision_query)]
|
109 |
print(f"After precision filter: {df.shape}")
|
110 |
|
111 |
+
# Filter by model size
|
112 |
+
# Note: When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0)
|
113 |
if len(df) > 0:
|
114 |
size_mask = df["#Params (B)"].apply(
|
115 |
lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown")
|
|
|
119 |
df = df[size_mask]
|
120 |
print(f"After size filter: {df.shape}")
|
121 |
|
122 |
+
# Filter by special tokens setting
|
123 |
df = df[df["Add Special Tokens"].isin(add_special_tokens_query)]
|
124 |
print(f"After add_special_tokens filter: {df.shape}")
|
125 |
|
126 |
+
# Filter by number of few-shot examples
|
127 |
df = df[df["Few-shot"].astype(str).isin(num_few_shots_query)]
|
128 |
print(f"After num_few_shots filter: {df.shape}")
|
129 |
|
130 |
+
# Filter by evaluator version
|
131 |
df = df[df["llm-jp-eval version"].isin(version_query)]
|
132 |
print(f"After version filter: {df.shape}")
|
133 |
|
134 |
+
# Filter by vLLM version
|
135 |
df = df[df["vllm version"].isin(vllm_query)]
|
136 |
print(f"After vllm version filter: {df.shape}")
|
137 |
|