Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -63,42 +63,11 @@ leaderboard_df = original_df.copy()
|
|
63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
|
65 |
# Searching and filtering
|
66 |
-
# def update_table(
|
67 |
-
# hidden_df: pd.DataFrame,
|
68 |
-
# columns: list,
|
69 |
-
# type_query: list,
|
70 |
-
# precision_query: str,
|
71 |
-
# size_query: list,
|
72 |
-
# add_special_tokens_query: list,
|
73 |
-
# num_few_shots_query: list,
|
74 |
-
# show_deleted: bool,
|
75 |
-
# show_merges: bool,
|
76 |
-
# show_flagged: bool,
|
77 |
-
# query: str,
|
78 |
-
# ):
|
79 |
-
# print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
80 |
-
# print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
81 |
-
|
82 |
-
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
83 |
-
# print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
84 |
-
|
85 |
-
# filtered_df = filter_queries(query, filtered_df)
|
86 |
-
# print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
87 |
-
|
88 |
-
# print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
89 |
-
# print("Filtered dataframe head:")
|
90 |
-
# print(filtered_df.head())
|
91 |
-
|
92 |
-
# df = select_columns(filtered_df, columns)
|
93 |
-
# print(f"Final df shape: {df.shape}")
|
94 |
-
# print("Final dataframe head:")
|
95 |
-
# print(df.head())
|
96 |
-
# return df
|
97 |
def update_table(
|
98 |
hidden_df: pd.DataFrame,
|
99 |
columns: list,
|
100 |
type_query: list,
|
101 |
-
precision_query:
|
102 |
size_query: list,
|
103 |
add_special_tokens_query: list,
|
104 |
num_few_shots_query: list,
|
@@ -106,17 +75,24 @@ def update_table(
|
|
106 |
show_merges: bool,
|
107 |
show_flagged: bool,
|
108 |
query: str,
|
109 |
-
architecture_query: list,
|
110 |
-
license_query: list
|
111 |
):
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
120 |
return df
|
121 |
|
122 |
|
@@ -129,23 +105,16 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
129 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
130 |
|
131 |
|
132 |
-
# def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
133 |
-
# always_here_cols = [
|
134 |
-
# AutoEvalColumn.model_type_symbol.name,
|
135 |
-
# AutoEvalColumn.model.name,
|
136 |
-
# ]
|
137 |
-
# # We use COLS to maintain sorting
|
138 |
-
# filtered_df = df[
|
139 |
-
# always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
|
140 |
-
# ]
|
141 |
-
# return filtered_df
|
142 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
143 |
always_here_cols = [
|
144 |
AutoEvalColumn.model_type_symbol.name,
|
145 |
AutoEvalColumn.model.name,
|
146 |
]
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
149 |
|
150 |
|
151 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
@@ -168,58 +137,17 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
168 |
return filtered_df
|
169 |
|
170 |
|
171 |
-
# def filter_models(
|
172 |
-
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
173 |
-
# ) -> pd.DataFrame:
|
174 |
-
# print(f"Initial df shape: {df.shape}")
|
175 |
-
# print(f"Initial df content:\n{df}")
|
176 |
-
|
177 |
-
# filtered_df = df
|
178 |
-
|
179 |
-
# # Model Type フィルタリング
|
180 |
-
# type_emoji = [t.split()[0] for t in type_query]
|
181 |
-
# filtered_df = filtered_df[filtered_df['T'].isin(type_emoji)]
|
182 |
-
# print(f"After type filter: {filtered_df.shape}")
|
183 |
-
|
184 |
-
# # Precision フィルタリング
|
185 |
-
# filtered_df = filtered_df[filtered_df['Precision'].isin(precision_query + ['Unknown', '?'])]
|
186 |
-
# print(f"After precision filter: {filtered_df.shape}")
|
187 |
-
|
188 |
-
# # Model Size フィルタリング
|
189 |
-
# if 'Unknown' in size_query:
|
190 |
-
# size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
|
191 |
-
# else:
|
192 |
-
# size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown'))
|
193 |
-
# filtered_df = filtered_df[size_mask]
|
194 |
-
# print(f"After size filter: {filtered_df.shape}")
|
195 |
-
|
196 |
-
# # Add Special Tokens フィルタリング
|
197 |
-
# filtered_df = filtered_df[filtered_df['Add Special Tokens'].isin(add_special_tokens_query + ['Unknown', '?'])]
|
198 |
-
# print(f"After add_special_tokens filter: {filtered_df.shape}")
|
199 |
-
|
200 |
-
# # Num Few Shots フィルタリング
|
201 |
-
# filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
|
202 |
-
# print(f"After num_few_shots filter: {filtered_df.shape}")
|
203 |
-
|
204 |
-
# # Show deleted models フィルタリング
|
205 |
-
# if not show_deleted:
|
206 |
-
# filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
|
207 |
-
# print(f"After show_deleted filter: {filtered_df.shape}")
|
208 |
-
|
209 |
-
# print("Filtered dataframe head:")
|
210 |
-
# print(filtered_df.head())
|
211 |
-
# return filtered_df
|
212 |
def filter_models(
|
213 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list,
|
214 |
-
add_special_tokens_query: list, num_few_shots_query: list,
|
215 |
-
show_deleted: bool, show_merges: bool, show_flagged: bool,
|
216 |
-
architecture_query: list, license_query: list
|
217 |
) -> pd.DataFrame:
|
218 |
print(f"Initial df shape: {df.shape}")
|
|
|
|
|
|
|
219 |
|
220 |
# Model Type フィルタリング
|
221 |
type_emoji = [t.split()[0] for t in type_query]
|
222 |
-
filtered_df =
|
223 |
print(f"After type filter: {filtered_df.shape}")
|
224 |
|
225 |
# Precision フィルタリング
|
@@ -230,7 +158,7 @@ def filter_models(
|
|
230 |
if 'Unknown' in size_query:
|
231 |
size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
|
232 |
else:
|
233 |
-
size_mask = filtered_df['#Params (B)'].apply(lambda x: any(
|
234 |
filtered_df = filtered_df[size_mask]
|
235 |
print(f"After size filter: {filtered_df.shape}")
|
236 |
|
@@ -242,16 +170,6 @@ def filter_models(
|
|
242 |
filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
|
243 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
244 |
|
245 |
-
# Architecture フィルタリング
|
246 |
-
if architecture_query:
|
247 |
-
filtered_df = filtered_df[filtered_df['Architecture'].isin(architecture_query)]
|
248 |
-
print(f"After architecture filter: {filtered_df.shape}")
|
249 |
-
|
250 |
-
# License フィルタリング
|
251 |
-
if license_query:
|
252 |
-
filtered_df = filtered_df[filtered_df['Hub License'].isin(license_query)]
|
253 |
-
print(f"After license filter: {filtered_df.shape}")
|
254 |
-
|
255 |
# Show deleted models フィルタリング
|
256 |
if not show_deleted:
|
257 |
filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
|
|
|
63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
|
65 |
# Searching and filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def update_table(
|
67 |
hidden_df: pd.DataFrame,
|
68 |
columns: list,
|
69 |
type_query: list,
|
70 |
+
precision_query: str,
|
71 |
size_query: list,
|
72 |
add_special_tokens_query: list,
|
73 |
num_few_shots_query: list,
|
|
|
75 |
show_merges: bool,
|
76 |
show_flagged: bool,
|
77 |
query: str,
|
|
|
|
|
78 |
):
|
79 |
+
print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
80 |
+
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
81 |
+
|
82 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
83 |
+
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
84 |
+
|
85 |
filtered_df = filter_queries(query, filtered_df)
|
86 |
+
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
87 |
+
|
88 |
+
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
89 |
+
print("Filtered dataframe head:")
|
90 |
+
print(filtered_df.head())
|
91 |
+
|
92 |
df = select_columns(filtered_df, columns)
|
93 |
+
print(f"Final df shape: {df.shape}")
|
94 |
+
print("Final dataframe head:")
|
95 |
+
print(df.head())
|
96 |
return df
|
97 |
|
98 |
|
|
|
105 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
106 |
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
109 |
always_here_cols = [
|
110 |
AutoEvalColumn.model_type_symbol.name,
|
111 |
AutoEvalColumn.model.name,
|
112 |
]
|
113 |
+
# We use COLS to maintain sorting
|
114 |
+
filtered_df = df[
|
115 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
|
116 |
+
]
|
117 |
+
return filtered_df
|
118 |
|
119 |
|
120 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
|
137 |
return filtered_df
|
138 |
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
def filter_models(
|
141 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
|
|
|
|
|
|
142 |
) -> pd.DataFrame:
|
143 |
print(f"Initial df shape: {df.shape}")
|
144 |
+
print(f"Initial df content:\n{df}")
|
145 |
+
|
146 |
+
filtered_df = df
|
147 |
|
148 |
# Model Type フィルタリング
|
149 |
type_emoji = [t.split()[0] for t in type_query]
|
150 |
+
filtered_df = filtered_df[filtered_df['T'].isin(type_emoji)]
|
151 |
print(f"After type filter: {filtered_df.shape}")
|
152 |
|
153 |
# Precision フィルタリング
|
|
|
158 |
if 'Unknown' in size_query:
|
159 |
size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
|
160 |
else:
|
161 |
+
size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown'))
|
162 |
filtered_df = filtered_df[size_mask]
|
163 |
print(f"After size filter: {filtered_df.shape}")
|
164 |
|
|
|
170 |
filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
|
171 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
# Show deleted models フィルタリング
|
174 |
if not show_deleted:
|
175 |
filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
|