sh1gechan commited on
Commit
ee338f6
·
verified ·
1 Parent(s): e80da87

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -109
app.py CHANGED
@@ -63,42 +63,11 @@ leaderboard_df = original_df.copy()
63
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
64
 
65
  # Searching and filtering
66
- # def update_table(
67
- # hidden_df: pd.DataFrame,
68
- # columns: list,
69
- # type_query: list,
70
- # precision_query: str,
71
- # size_query: list,
72
- # add_special_tokens_query: list,
73
- # num_few_shots_query: list,
74
- # show_deleted: bool,
75
- # show_merges: bool,
76
- # show_flagged: bool,
77
- # query: str,
78
- # ):
79
- # print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
80
- # print(f"hidden_df shape before filtering: {hidden_df.shape}")
81
-
82
- # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
83
- # print(f"filtered_df shape after filter_models: {filtered_df.shape}")
84
-
85
- # filtered_df = filter_queries(query, filtered_df)
86
- # print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
87
-
88
- # print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
89
- # print("Filtered dataframe head:")
90
- # print(filtered_df.head())
91
-
92
- # df = select_columns(filtered_df, columns)
93
- # print(f"Final df shape: {df.shape}")
94
- # print("Final dataframe head:")
95
- # print(df.head())
96
- # return df
97
  def update_table(
98
  hidden_df: pd.DataFrame,
99
  columns: list,
100
  type_query: list,
101
- precision_query: list,
102
  size_query: list,
103
  add_special_tokens_query: list,
104
  num_few_shots_query: list,
@@ -106,17 +75,24 @@ def update_table(
106
  show_merges: bool,
107
  show_flagged: bool,
108
  query: str,
109
- architecture_query: list,
110
- license_query: list
111
  ):
112
- filtered_df = filter_models(
113
- hidden_df, type_query, size_query, precision_query,
114
- add_special_tokens_query, num_few_shots_query,
115
- show_deleted, show_merges, show_flagged,
116
- architecture_query, license_query
117
- )
118
  filtered_df = filter_queries(query, filtered_df)
 
 
 
 
 
 
119
  df = select_columns(filtered_df, columns)
 
 
 
120
  return df
121
 
122
 
@@ -129,23 +105,16 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
129
  return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
130
 
131
 
132
- # def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
133
- # always_here_cols = [
134
- # AutoEvalColumn.model_type_symbol.name,
135
- # AutoEvalColumn.model.name,
136
- # ]
137
- # # We use COLS to maintain sorting
138
- # filtered_df = df[
139
- # always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
140
- # ]
141
- # return filtered_df
142
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
143
  always_here_cols = [
144
  AutoEvalColumn.model_type_symbol.name,
145
  AutoEvalColumn.model.name,
146
  ]
147
- selected_cols = always_here_cols + [c for c in columns if c in df.columns]
148
- return df[selected_cols]
 
 
 
149
 
150
 
151
  def filter_queries(query: str, filtered_df: pd.DataFrame):
@@ -168,58 +137,17 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
168
  return filtered_df
169
 
170
 
171
- # def filter_models(
172
- # df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
173
- # ) -> pd.DataFrame:
174
- # print(f"Initial df shape: {df.shape}")
175
- # print(f"Initial df content:\n{df}")
176
-
177
- # filtered_df = df
178
-
179
- # # Model Type フィルタリング
180
- # type_emoji = [t.split()[0] for t in type_query]
181
- # filtered_df = filtered_df[filtered_df['T'].isin(type_emoji)]
182
- # print(f"After type filter: {filtered_df.shape}")
183
-
184
- # # Precision フィルタリング
185
- # filtered_df = filtered_df[filtered_df['Precision'].isin(precision_query + ['Unknown', '?'])]
186
- # print(f"After precision filter: {filtered_df.shape}")
187
-
188
- # # Model Size フィルタリング
189
- # if 'Unknown' in size_query:
190
- # size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
191
- # else:
192
- # size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown'))
193
- # filtered_df = filtered_df[size_mask]
194
- # print(f"After size filter: {filtered_df.shape}")
195
-
196
- # # Add Special Tokens フィルタリング
197
- # filtered_df = filtered_df[filtered_df['Add Special Tokens'].isin(add_special_tokens_query + ['Unknown', '?'])]
198
- # print(f"After add_special_tokens filter: {filtered_df.shape}")
199
-
200
- # # Num Few Shots フィルタリング
201
- # filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
202
- # print(f"After num_few_shots filter: {filtered_df.shape}")
203
-
204
- # # Show deleted models フィルタリング
205
- # if not show_deleted:
206
- # filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
207
- # print(f"After show_deleted filter: {filtered_df.shape}")
208
-
209
- # print("Filtered dataframe head:")
210
- # print(filtered_df.head())
211
- # return filtered_df
212
  def filter_models(
213
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list,
214
- add_special_tokens_query: list, num_few_shots_query: list,
215
- show_deleted: bool, show_merges: bool, show_flagged: bool,
216
- architecture_query: list, license_query: list
217
  ) -> pd.DataFrame:
218
  print(f"Initial df shape: {df.shape}")
 
 
 
219
 
220
  # Model Type フィルタリング
221
  type_emoji = [t.split()[0] for t in type_query]
222
- filtered_df = df[df['T'].isin(type_emoji)]
223
  print(f"After type filter: {filtered_df.shape}")
224
 
225
  # Precision フィルタリング
@@ -230,7 +158,7 @@ def filter_models(
230
  if 'Unknown' in size_query:
231
  size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
232
  else:
233
- size_mask = filtered_df['#Params (B)'].apply(lambda x: any(pd.Interval(NUMERIC_INTERVALS[s].left, NUMERIC_INTERVALS[s].right).contains(x) for s in size_query if s != 'Unknown'))
234
  filtered_df = filtered_df[size_mask]
235
  print(f"After size filter: {filtered_df.shape}")
236
 
@@ -242,16 +170,6 @@ def filter_models(
242
  filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
243
  print(f"After num_few_shots filter: {filtered_df.shape}")
244
 
245
- # Architecture フィルタリング
246
- if architecture_query:
247
- filtered_df = filtered_df[filtered_df['Architecture'].isin(architecture_query)]
248
- print(f"After architecture filter: {filtered_df.shape}")
249
-
250
- # License フィルタリング
251
- if license_query:
252
- filtered_df = filtered_df[filtered_df['Hub License'].isin(license_query)]
253
- print(f"After license filter: {filtered_df.shape}")
254
-
255
  # Show deleted models フィルタリング
256
  if not show_deleted:
257
  filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
 
63
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
64
 
65
  # Searching and filtering
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  def update_table(
67
  hidden_df: pd.DataFrame,
68
  columns: list,
69
  type_query: list,
70
+ precision_query: str,
71
  size_query: list,
72
  add_special_tokens_query: list,
73
  num_few_shots_query: list,
 
75
  show_merges: bool,
76
  show_flagged: bool,
77
  query: str,
 
 
78
  ):
79
+ print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
80
+ print(f"hidden_df shape before filtering: {hidden_df.shape}")
81
+
82
+ filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
83
+ print(f"filtered_df shape after filter_models: {filtered_df.shape}")
84
+
85
  filtered_df = filter_queries(query, filtered_df)
86
+ print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
87
+
88
+ print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
89
+ print("Filtered dataframe head:")
90
+ print(filtered_df.head())
91
+
92
  df = select_columns(filtered_df, columns)
93
+ print(f"Final df shape: {df.shape}")
94
+ print("Final dataframe head:")
95
+ print(df.head())
96
  return df
97
 
98
 
 
105
  return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
106
 
107
 
 
 
 
 
 
 
 
 
 
 
108
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
109
  always_here_cols = [
110
  AutoEvalColumn.model_type_symbol.name,
111
  AutoEvalColumn.model.name,
112
  ]
113
+ # We use COLS to maintain sorting
114
+ filtered_df = df[
115
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
116
+ ]
117
+ return filtered_df
118
 
119
 
120
  def filter_queries(query: str, filtered_df: pd.DataFrame):
 
137
  return filtered_df
138
 
139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  def filter_models(
141
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
 
 
 
142
  ) -> pd.DataFrame:
143
  print(f"Initial df shape: {df.shape}")
144
+ print(f"Initial df content:\n{df}")
145
+
146
+ filtered_df = df
147
 
148
  # Model Type フィルタリング
149
  type_emoji = [t.split()[0] for t in type_query]
150
+ filtered_df = filtered_df[filtered_df['T'].isin(type_emoji)]
151
  print(f"After type filter: {filtered_df.shape}")
152
 
153
  # Precision フィルタリング
 
158
  if 'Unknown' in size_query:
159
  size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
160
  else:
161
+ size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown'))
162
  filtered_df = filtered_df[size_mask]
163
  print(f"After size filter: {filtered_df.shape}")
164
 
 
170
  filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
171
  print(f"After num_few_shots filter: {filtered_df.shape}")
172
 
 
 
 
 
 
 
 
 
 
 
173
  # Show deleted models フィルタリング
174
  if not show_deleted:
175
  filtered_df = filtered_df[filtered_df['Available on the hub'] == True]