llzzyy233 commited on
Commit
85fd8d2
1 Parent(s): 0ac14fc
Files changed (1) hide show
  1. ultralytics/cfg/default.yaml +114 -114
ultralytics/cfg/default.yaml CHANGED
@@ -1,114 +1,114 @@
1
- # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- # Default training settings and hyperparameters for medium-augmentation COCO training
3
-
4
- task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
5
- mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
6
-
7
- # Train settings -------------------------------------------------------------------------------------------------------
8
- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
9
- data: # (str, optional) path to data file, i.e. coco128.yaml
10
- epochs: 100 # (int) number of epochs to train for
11
- patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
12
- batch: -1 # (int) number of images per batch (-1 for AutoBatch)
13
- imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
14
- save: True # (bool) save train checkpoints and predict results
15
- save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
16
- cache: False # (bool) True/ram, disk or False. Use cache for data loading
17
- device: cpu # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
18
- workers: 2 # (int) number of worker threads for data loading (per RANK if DDP)
19
- project: # (str, optional) project name
20
- name: # (str, optional) experiment name, results saved to 'project/name' directory
21
- exist_ok: True # (bool) whether to overwrite existing experiment
22
- pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
23
- optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
24
- verbose: True # (bool) whether to print verbose output
25
- seed: 0 # (int) random seed for reproducibility
26
- deterministic: True # (bool) whether to enable deterministic mode
27
- single_cls: False # (bool) train multi-class data as single-class
28
- rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
29
- cos_lr: False # (bool) use cosine learning rate scheduler
30
- close_mosaic: 10 # (int) disable mosaic augmentation for final epochs
31
- resume: False # (bool) resume training from last checkpoint
32
- amp: False # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
33
- fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
34
- profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
35
- # Segmentation
36
- overlap_mask: True # (bool) masks should overlap during training (segment train only)
37
- mask_ratio: 4 # (int) mask downsample ratio (segment train only)
38
- # Classification
39
- dropout: 0.0 # (float) use dropout regularization (classify train only)
40
-
41
- # Val/Test settings ----------------------------------------------------------------------------------------------------
42
- val: True # (bool) validate/test during training
43
- split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
44
- save_json: True # (bool) save results to JSON file
45
- save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
46
- conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
47
- iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
48
- max_det: 300 # (int) maximum number of detections per image
49
- half: False # (bool) use half precision (FP16)
50
- dnn: False # (bool) use OpenCV DNN for ONNX inference
51
- plots: True # (bool) save plots during train/val
52
-
53
- # Prediction settings --------------------------------------------------------------------------------------------------
54
- source: # (str, optional) source directory for images or videos
55
- show: False # (bool) show results if possible
56
- save_txt: False # (bool) save results as .txt file
57
- save_conf: False # (bool) save results with confidence scores
58
- save_crop: False # (bool) save cropped images with results
59
- show_labels: True # (bool) show object labels in plots
60
- show_conf: True # (bool) show object confidence scores in plots
61
- vid_stride: 1 # (int) video frame-rate stride
62
- line_width: # (int, optional) line width of the bounding boxes, auto if missing
63
- visualize: False # (bool) visualize model features
64
- augment: False # (bool) apply image augmentation to prediction sources
65
- agnostic_nms: False # (bool) class-agnostic NMS
66
- classes: # (int | list[int], optional) filter results by class, i.e. class=0, or class=[0,2,3]
67
- retina_masks: False # (bool) use high-resolution segmentation masks
68
- boxes: True # (bool) Show boxes in segmentation predictions
69
-
70
- # Export settings ------------------------------------------------------------------------------------------------------
71
- format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
72
- keras: False # (bool) use Kera=s
73
- optimize: False # (bool) TorchScript: optimize for mobile
74
- int8: False # (bool) CoreML/TF INT8 quantization
75
- dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
76
- simplify: False # (bool) ONNX: simplify model
77
- opset: # (int, optional) ONNX: opset version
78
- workspace: 4 # (int) TensorRT: workspace size (GB)
79
- nms: False # (bool) CoreML: add NMS
80
-
81
- # Hyperparameters ------------------------------------------------------------------------------------------------------
82
- lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
83
- lrf: 0.01 # (float) final learning rate (lr0 * lrf)
84
- momentum: 0.937 # (float) SGD momentum/Adam beta1
85
- weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
86
- warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
87
- warmup_momentum: 0.8 # (float) warmup initial momentum
88
- warmup_bias_lr: 0.1 # (float) warmup initial bias lr
89
- box: 7.5 # (float) box loss gain
90
- cls: 0.5 # (float) cls loss gain (scale with pixels)
91
- dfl: 1.5 # (float) dfl loss gain
92
- pose: 12.0 # (float) pose loss gain
93
- kobj: 1.0 # (float) keypoint obj loss gain
94
- label_smoothing: 0.0 # (float) label smoothing (fraction)
95
- nbs: 64 # (int) nominal batch size
96
- hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
97
- hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
98
- hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
99
- degrees: 0.0 # (float) image rotation (+/- deg)
100
- translate: 0.1 # (float) image translation (+/- fraction)
101
- scale: 0.5 # (float) image scale (+/- gain)
102
- shear: 0.0 # (float) image shear (+/- deg)
103
- perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
104
- flipud: 0.0 # (float) image flip up-down (probability)
105
- fliplr: 0.5 # (float) image flip left-right (probability)
106
- mosaic: 1.0 # (float) image mosaic (probability)
107
- mixup: 0.0 # (float) image mixup (probability)
108
- copy_paste: 0.0 # (float) segment copy-paste (probability)
109
-
110
- # Custom config.yaml ---------------------------------------------------------------------------------------------------
111
- cfg: # (str, optional) for overriding defaults.yaml
112
- save_dir: ./runs/train1 # 自己设置路径
113
- # Tracker settings ------------------------------------------------------------------------------------------------------
114
- tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Default training settings and hyperparameters for medium-augmentation COCO training
3
+
4
+ task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
5
+ mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
6
+
7
+ # Train settings -------------------------------------------------------------------------------------------------------
8
+ model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
9
+ data: # (str, optional) path to data file, i.e. coco128.yaml
10
+ epochs: 100 # (int) number of epochs to train for
11
+ patience: 50 # (int) epochs to wait for no observable improvement for early stopping of training
12
+ batch: -1 # (int) number of images per batch (-1 for AutoBatch)
13
+ imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes
14
+ save: True # (bool) save train checkpoints and predict results
15
+ save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
16
+ cache: False # (bool) True/ram, disk or False. Use cache for data loading
17
+ device: cpu # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
18
+ workers: 2 # (int) number of worker threads for data loading (per RANK if DDP)
19
+ project: # (str, optional) project name
20
+ name: # (str, optional) experiment name, results saved to 'project/name' directory
21
+ exist_ok: True # (bool) whether to overwrite existing experiment
22
+ pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
23
+ optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
24
+ verbose: True # (bool) whether to print verbose output
25
+ seed: 0 # (int) random seed for reproducibility
26
+ deterministic: True # (bool) whether to enable deterministic mode
27
+ single_cls: False # (bool) train multi-class data as single-class
28
+ rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
29
+ cos_lr: False # (bool) use cosine learning rate scheduler
30
+ close_mosaic: 10 # (int) disable mosaic augmentation for final epochs
31
+ resume: False # (bool) resume training from last checkpoint
32
+ amp: False # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
33
+ fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
34
+ profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
35
+ # Segmentation
36
+ overlap_mask: True # (bool) masks should overlap during training (segment train only)
37
+ mask_ratio: 4 # (int) mask downsample ratio (segment train only)
38
+ # Classification
39
+ dropout: 0.0 # (float) use dropout regularization (classify train only)
40
+
41
+ # Val/Test settings ----------------------------------------------------------------------------------------------------
42
+ val: True # (bool) validate/test during training
43
+ split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
44
+ save_json: True # (bool) save results to JSON file
45
+ save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
46
+ conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
47
+ iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
48
+ max_det: 300 # (int) maximum number of detections per image
49
+ half: False # (bool) use half precision (FP16)
50
+ dnn: False # (bool) use OpenCV DNN for ONNX inference
51
+ plots: True # (bool) save plots during train/val
52
+
53
+ # Prediction settings --------------------------------------------------------------------------------------------------
54
+ source: # (str, optional) source directory for images or videos
55
+ show: False # (bool) show results if possible
56
+ save_txt: False # (bool) save results as .txt file
57
+ save_conf: False # (bool) save results with confidence scores
58
+ save_crop: False # (bool) save cropped images with results
59
+ show_labels: True # (bool) show object labels in plots
60
+ show_conf: True # (bool) show object confidence scores in plots
61
+ vid_stride: 1 # (int) video frame-rate stride
62
+ line_width: # (int, optional) line width of the bounding boxes, auto if missing
63
+ visualize: False # (bool) visualize model features
64
+ augment: False # (bool) apply image augmentation to prediction sources
65
+ agnostic_nms: False # (bool) class-agnostic NMS
66
+ classes: # (int | list[int], optional) filter results by class, i.e. class=0, or class=[0,2,3]
67
+ retina_masks: False # (bool) use high-resolution segmentation masks
68
+ boxes: True # (bool) Show boxes in segmentation predictions
69
+
70
+ # Export settings ------------------------------------------------------------------------------------------------------
71
+ format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
72
+ keras: False # (bool) use Kera=s
73
+ optimize: False # (bool) TorchScript: optimize for mobile
74
+ int8: False # (bool) CoreML/TF INT8 quantization
75
+ dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
76
+ simplify: False # (bool) ONNX: simplify model
77
+ opset: # (int, optional) ONNX: opset version
78
+ workspace: 4 # (int) TensorRT: workspace size (GB)
79
+ nms: True # (bool) CoreML: add NMS
80
+
81
+ # Hyperparameters ------------------------------------------------------------------------------------------------------
82
+ lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
83
+ lrf: 0.01 # (float) final learning rate (lr0 * lrf)
84
+ momentum: 0.937 # (float) SGD momentum/Adam beta1
85
+ weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
86
+ warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
87
+ warmup_momentum: 0.8 # (float) warmup initial momentum
88
+ warmup_bias_lr: 0.1 # (float) warmup initial bias lr
89
+ box: 7.5 # (float) box loss gain
90
+ cls: 0.5 # (float) cls loss gain (scale with pixels)
91
+ dfl: 1.5 # (float) dfl loss gain
92
+ pose: 12.0 # (float) pose loss gain
93
+ kobj: 1.0 # (float) keypoint obj loss gain
94
+ label_smoothing: 0.0 # (float) label smoothing (fraction)
95
+ nbs: 64 # (int) nominal batch size
96
+ hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
97
+ hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
98
+ hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
99
+ degrees: 0.0 # (float) image rotation (+/- deg)
100
+ translate: 0.1 # (float) image translation (+/- fraction)
101
+ scale: 0.5 # (float) image scale (+/- gain)
102
+ shear: 0.0 # (float) image shear (+/- deg)
103
+ perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
104
+ flipud: 0.0 # (float) image flip up-down (probability)
105
+ fliplr: 0.5 # (float) image flip left-right (probability)
106
+ mosaic: 1.0 # (float) image mosaic (probability)
107
+ mixup: 0.0 # (float) image mixup (probability)
108
+ copy_paste: 0.0 # (float) segment copy-paste (probability)
109
+
110
+ # Custom config.yaml ---------------------------------------------------------------------------------------------------
111
+ cfg: # (str, optional) for overriding defaults.yaml
112
+ save_dir: ./runs/train1 # 自己设置路径
113
+ # Tracker settings ------------------------------------------------------------------------------------------------------
114
+ tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]