File size: 1,869 Bytes
0f09c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from pathlib import Path

from ultralytics import SAM, YOLO


def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None):
    """

    Automatically annotates images using a YOLO object detection model and a SAM segmentation model.

    Args:

        data (str): Path to a folder containing images to be annotated.

        det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'.

        sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'.

        device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available).

        output_dir (str | None | optional): Directory to save the annotated results.

            Defaults to a 'labels' folder in the same directory as 'data'.

    """
    det_model = YOLO(det_model)
    sam_model = SAM(sam_model)

    if not output_dir:
        output_dir = Path(str(data)).parent / 'labels'
    Path(output_dir).mkdir(exist_ok=True, parents=True)

    det_results = det_model(data, stream=True, device=device)

    for result in det_results:
        boxes = result.boxes.xyxy  # Boxes object for bbox outputs
        class_ids = result.boxes.cls.int().tolist()  # noqa
        if len(class_ids):
            sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
            segments = sam_results[0].masks.xyn  # noqa

            with open(str(Path(output_dir) / Path(result.path).stem) + '.txt', 'w') as f:
                for i in range(len(segments)):
                    s = segments[i]
                    if len(s) == 0:
                        continue
                    segment = map(str, segments[i].reshape(-1).tolist())
                    f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')