File size: 41,423 Bytes
0f09c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""

Model validation metrics

"""
import math
import warnings
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import torch

from ultralytics.utils import LOGGER, SimpleClass, TryExcept, plt_settings
from ultralytics.utils.iou import  *

OKS_SIGMA = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0


# Boxes
def box_area(box):
    """Return box area, where box shape is xyxy(4,n)."""
    return (box[2] - box[0]) * (box[3] - box[1])


def bbox_ioa(box1, box2, eps=1e-7):
    """

    Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format.



    Args:

        box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes.

        box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes.

        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.



    Returns:

        (np.array): A numpy array of shape (n, m) representing the intersection over box2 area.

    """

    # Get the coordinates of bounding boxes
    b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
    b2_x1, b2_y1, b2_x2, b2_y2 = box2.T

    # Intersection area
    inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
                 (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)

    # box2 area
    box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps

    # Intersection over box2 area
    return inter_area / box2_area


def box_iou(box1, box2, eps=1e-7):
    """

    Calculate intersection-over-union (IoU) of boxes.

    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.

    Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py



    Args:

        box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes.

        box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes.

        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.



    Returns:

        (torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.

    """

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)


def bbox_iou(box1, box2, xywh=True, type_='CIoU',eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    # 将边界框信息拼接
    b1 = torch.stack([b1_x1, b1_y1, b1_x2, b1_y2], dim=-1)
    b2 = torch.stack([b2_x1, b2_y1, b2_x2, b2_y2], dim=-1)
    self = IoU_Cal(b1, b2)
    loss = getattr(IoU_Cal, type_)(b1, b2, self=self)
    iou = 1 - self.iou
    return loss, iou


def mask_iou(mask1, mask2, eps=1e-7):
    """

    Calculate masks IoU.



    Args:

        mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the

                        product of image width and height.

        mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the

                        product of image width and height.

        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.



    Returns:

        (torch.Tensor): A tensor of shape (N, M) representing masks IoU.

    """
    intersection = torch.matmul(mask1, mask2.T).clamp_(0)
    union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection  # (area1 + area2) - intersection
    return intersection / (union + eps)


def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7):
    """

    Calculate Object Keypoint Similarity (OKS).



    Args:

        kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints.

        kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints.

        area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth.

        sigma (list): A list containing 17 values representing keypoint scales.

        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.



    Returns:

        (torch.Tensor): A tensor of shape (N, M) representing keypoint similarities.

    """
    d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2  # (N, M, 17)
    sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype)  # (17, )
    kpt_mask = kpt1[..., 2] != 0  # (N, 17)
    e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2  # from cocoeval
    # e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2  # from formula
    return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)


def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps


class ConfusionMatrix:
    """

    A class for calculating and updating a confusion matrix for object detection and classification tasks.



    Attributes:

        task (str): The type of task, either 'detect' or 'classify'.

        matrix (np.array): The confusion matrix, with dimensions depending on the task.

        nc (int): The number of classes.

        conf (float): The confidence threshold for detections.

        iou_thres (float): The Intersection over Union threshold.

    """

    def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'):
        """Initialize attributes for the YOLO model."""
        self.task = task
        self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc))
        self.nc = nc  # number of classes
        self.conf = conf
        self.iou_thres = iou_thres

    def process_cls_preds(self, preds, targets):
        """

        Update confusion matrix for classification task



        Args:

            preds (Array[N, min(nc,5)]): Predicted class labels.

            targets (Array[N, 1]): Ground truth class labels.

        """
        preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
        for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
            self.matrix[p][t] += 1

    def process_batch(self, detections, labels):
        """

        Update confusion matrix for object detection task.



        Args:

            detections (Array[N, 6]): Detected bounding boxes and their associated information.

                                      Each row should contain (x1, y1, x2, y2, conf, class).

            labels (Array[M, 5]): Ground truth bounding boxes and their associated class labels.

                                  Each row should contain (class, x1, y1, x2, y2).

        """
        if detections is None:
            gt_classes = labels.int()
            for gc in gt_classes:
                self.matrix[self.nc, gc] += 1  # background FN
            return

        detections = detections[detections[:, 4] > self.conf]
        gt_classes = labels[:, 0].int()
        detection_classes = detections[:, 5].int()
        iou = box_iou(labels[:, 1:], detections[:, :4])

        x = torch.where(iou > self.iou_thres)
        if x[0].shape[0]:
            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
            if x[0].shape[0] > 1:
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        else:
            matches = np.zeros((0, 3))

        n = matches.shape[0] > 0
        m0, m1, _ = matches.transpose().astype(int)
        for i, gc in enumerate(gt_classes):
            j = m0 == i
            if n and sum(j) == 1:
                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
            else:
                self.matrix[self.nc, gc] += 1  # true background

        if n:
            for i, dc in enumerate(detection_classes):
                if not any(m1 == i):
                    self.matrix[dc, self.nc] += 1  # predicted background

    def matrix(self):
        """Returns the confusion matrix."""
        return self.matrix

    def tp_fp(self):
        """Returns true positives and false positives."""
        tp = self.matrix.diagonal()  # true positives
        fp = self.matrix.sum(1) - tp  # false positives
        # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
        return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp)  # remove background class if task=detect

    @TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
    @plt_settings()
    def plot(self, normalize=True, save_dir='', names=(), on_plot=None):
        """

        Plot the confusion matrix using seaborn and save it to a file.



        Args:

            normalize (bool): Whether to normalize the confusion matrix.

            save_dir (str): Directory where the plot will be saved.

            names (tuple): Names of classes, used as labels on the plot.

            on_plot (func): An optional callback to pass plots path and data when they are rendered.

        """
        import seaborn as sn

        array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1)  # normalize columns
        array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

        fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
        nc, nn = self.nc, len(names)  # number of classes, names
        sn.set(font_scale=1.0 if nc < 50 else 0.8)  # for label size
        labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
        ticklabels = (list(names) + ['background']) if labels else 'auto'
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
            sn.heatmap(array,
                       ax=ax,
                       annot=nc < 30,
                       annot_kws={
                           'size': 8},
                       cmap='Blues',
                       fmt='.2f' if normalize else '.0f',
                       square=True,
                       vmin=0.0,
                       xticklabels=ticklabels,
                       yticklabels=ticklabels).set_facecolor((1, 1, 1))
        title = 'Confusion Matrix' + ' Normalized' * normalize
        ax.set_xlabel('True')
        ax.set_ylabel('Predicted')
        ax.set_title(title)
        plot_fname = Path(save_dir) / f'{title.lower().replace(" ", "_")}.png'
        fig.savefig(plot_fname, dpi=250)
        plt.close(fig)
        if on_plot:
            on_plot(plot_fname)

    def print(self):
        """

        Print the confusion matrix to the console.

        """
        for i in range(self.nc + 1):
            LOGGER.info(' '.join(map(str, self.matrix[i])))


def smooth(y, f=0.05):
    """Box filter of fraction f."""
    nf = round(len(y) * f * 2) // 2 + 1  # number of filter elements (must be odd)
    p = np.ones(nf // 2)  # ones padding
    yp = np.concatenate((p * y[0], y, p * y[-1]), 0)  # y padded
    return np.convolve(yp, np.ones(nf) / nf, mode='valid')  # y-smoothed


@plt_settings()
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=(), on_plot=None):
    """Plots a precision-recall curve."""
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
    py = np.stack(py, axis=1)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py.T):
            ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}')  # plot(recall, precision)
    else:
        ax.plot(px, py, linewidth=1, color='grey')  # plot(recall, precision)

    ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
    ax.set_xlabel('Recall')
    ax.set_ylabel('Precision')
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
    ax.set_title('Precision-Recall Curve')
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(save_dir)


@plt_settings()
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric', on_plot=None):
    """Plots a metric-confidence curve."""
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py):
            ax.plot(px, y, linewidth=1, label=f'{names[i]}')  # plot(confidence, metric)
    else:
        ax.plot(px, py.T, linewidth=1, color='grey')  # plot(confidence, metric)

    y = smooth(py.mean(0), 0.05)
    ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
    ax.set_title(f'{ylabel}-Confidence Curve')
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(save_dir)


def compute_ap(recall, precision):
    """

    Compute the average precision (AP) given the recall and precision curves.



    Arguments:

        recall (list): The recall curve.

        precision (list): The precision curve.



    Returns:

        (float): Average precision.

        (np.ndarray): Precision envelope curve.

        (np.ndarray): Modified recall curve with sentinel values added at the beginning and end.

    """

    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = 'interp'  # methods: 'continuous', 'interp'
    if method == 'interp':
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x-axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap, mpre, mrec


def ap_per_class(tp,

                 conf,

                 pred_cls,

                 target_cls,

                 plot=False,

                 on_plot=None,

                 save_dir=Path(),

                 names=(),

                 eps=1e-16,

                 prefix=''):
    """

    Computes the average precision per class for object detection evaluation.



    Args:

        tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).

        conf (np.ndarray): Array of confidence scores of the detections.

        pred_cls (np.ndarray): Array of predicted classes of the detections.

        target_cls (np.ndarray): Array of true classes of the detections.

        plot (bool, optional): Whether to plot PR curves or not. Defaults to False.

        on_plot (func, optional): A callback to pass plots path and data when they are rendered. Defaults to None.

        save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.

        names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.

        eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.

        prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.



    Returns:

        (tuple): A tuple of six arrays and one array of unique classes, where:

            tp (np.ndarray): True positive counts for each class.

            fp (np.ndarray): False positive counts for each class.

            p (np.ndarray): Precision values at each confidence threshold.

            r (np.ndarray): Recall values at each confidence threshold.

            f1 (np.ndarray): F1-score values at each confidence threshold.

            ap (np.ndarray): Average precision for each class at different IoU thresholds.

            unique_classes (np.ndarray): An array of unique classes that have data.



    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes, nt = np.unique(target_cls, return_counts=True)
    nc = unique_classes.shape[0]  # number of classes, number of detections

    # Create Precision-Recall curve and compute AP for each class
    px, py = np.linspace(0, 1, 1000), []  # for plotting
    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = nt[ci]  # number of labels
        n_p = i.sum()  # number of predictions
        if n_p == 0 or n_l == 0:
            continue

        # Accumulate FPs and TPs
        fpc = (1 - tp[i]).cumsum(0)
        tpc = tp[i].cumsum(0)

        # Recall
        recall = tpc / (n_l + eps)  # recall curve
        r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases

        # Precision
        precision = tpc / (tpc + fpc)  # precision curve
        p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score

        # AP from recall-precision curve
        for j in range(tp.shape[1]):
            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
            if plot and j == 0:
                py.append(np.interp(px, mrec, mpre))  # precision at mAP@0.5

    # Compute F1 (harmonic mean of precision and recall)
    f1 = 2 * p * r / (p + r + eps)
    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
    names = dict(enumerate(names))  # to dict
    if plot:
        plot_pr_curve(px, py, ap, save_dir / f'{prefix}PR_curve.png', names, on_plot=on_plot)
        plot_mc_curve(px, f1, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1', on_plot=on_plot)
        plot_mc_curve(px, p, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision', on_plot=on_plot)
        plot_mc_curve(px, r, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall', on_plot=on_plot)

    i = smooth(f1.mean(0), 0.1).argmax()  # max F1 index
    p, r, f1 = p[:, i], r[:, i], f1[:, i]
    tp = (r * nt).round()  # true positives
    fp = (tp / (p + eps) - tp).round()  # false positives
    return tp, fp, p, r, f1, ap, unique_classes.astype(int)


class Metric(SimpleClass):
    """

        Class for computing evaluation metrics for YOLOv8 model.



        Attributes:

            p (list): Precision for each class. Shape: (nc,).

            r (list): Recall for each class. Shape: (nc,).

            f1 (list): F1 score for each class. Shape: (nc,).

            all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).

            ap_class_index (list): Index of class for each AP score. Shape: (nc,).

            nc (int): Number of classes.



        Methods:

            ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].

            ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].

            mp(): Mean precision of all classes. Returns: Float.

            mr(): Mean recall of all classes. Returns: Float.

            map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.

            map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.

            map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.

            mean_results(): Mean of results, returns mp, mr, map50, map.

            class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].

            maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).

            fitness(): Model fitness as a weighted combination of metrics. Returns: Float.

            update(results): Update metric attributes with new evaluation results.



        """

    def __init__(self) -> None:
        self.p = []  # (nc, )
        self.r = []  # (nc, )
        self.f1 = []  # (nc, )
        self.all_ap = []  # (nc, 10)
        self.ap_class_index = []  # (nc, )
        self.nc = 0

    @property
    def ap50(self):
        """

        Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes.



        Returns:

            (np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available.

        """
        return self.all_ap[:, 0] if len(self.all_ap) else []

    @property
    def ap(self):
        """

        Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.



        Returns:

            (np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available.

        """
        return self.all_ap.mean(1) if len(self.all_ap) else []

    @property
    def mp(self):
        """

        Returns the Mean Precision of all classes.



        Returns:

            (float): The mean precision of all classes.

        """
        return self.p.mean() if len(self.p) else 0.0

    @property
    def mr(self):
        """

        Returns the Mean Recall of all classes.



        Returns:

            (float): The mean recall of all classes.

        """
        return self.r.mean() if len(self.r) else 0.0

    @property
    def map50(self):
        """

        Returns the mean Average Precision (mAP) at an IoU threshold of 0.5.



        Returns:

            (float): The mAP50 at an IoU threshold of 0.5.

        """
        return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0

    @property
    def map75(self):
        """

        Returns the mean Average Precision (mAP) at an IoU threshold of 0.75.



        Returns:

            (float): The mAP50 at an IoU threshold of 0.75.

        """
        return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0

    @property
    def map(self):
        """

        Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.



        Returns:

            (float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05.

        """
        return self.all_ap.mean() if len(self.all_ap) else 0.0

    def mean_results(self):
        """Mean of results, return mp, mr, map50, map."""
        return [self.mp, self.mr, self.map50, self.map]

    def class_result(self, i):
        """class-aware result, return p[i], r[i], ap50[i], ap[i]."""
        return self.p[i], self.r[i], self.ap50[i], self.ap[i]

    @property
    def maps(self):
        """mAP of each class."""
        maps = np.zeros(self.nc) + self.map
        for i, c in enumerate(self.ap_class_index):
            maps[c] = self.ap[i]
        return maps

    def fitness(self):
        """Model fitness as a weighted combination of metrics."""
        w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
        return (np.array(self.mean_results()) * w).sum()

    def update(self, results):
        """

        Args:

            results (tuple): A tuple of (p, r, ap, f1, ap_class)

        """
        self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results


class DetMetrics(SimpleClass):
    """

    This class is a utility class for computing detection metrics such as precision, recall, and mean average precision

    (mAP) of an object detection model.



    Args:

        save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.

        plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.

        on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.

        names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.



    Attributes:

        save_dir (Path): A path to the directory where the output plots will be saved.

        plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.

        on_plot (func): An optional callback to pass plots path and data when they are rendered.

        names (tuple of str): A tuple of strings that represents the names of the classes.

        box (Metric): An instance of the Metric class for storing the results of the detection metrics.

        speed (dict): A dictionary for storing the execution time of different parts of the detection process.



    Methods:

        process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.

        keys: Returns a list of keys for accessing the computed detection metrics.

        mean_results: Returns a list of mean values for the computed detection metrics.

        class_result(i): Returns a list of values for the computed detection metrics for a specific class.

        maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.

        fitness: Computes the fitness score based on the computed detection metrics.

        ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.

        results_dict: Returns a dictionary that maps detection metric keys to their computed values.

    """

    def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}

    def process(self, tp, conf, pred_cls, target_cls):
        """Process predicted results for object detection and update metrics."""
        results = ap_per_class(tp,
                               conf,
                               pred_cls,
                               target_cls,
                               plot=self.plot,
                               save_dir=self.save_dir,
                               names=self.names,
                               on_plot=self.on_plot)[2:]
        self.box.nc = len(self.names)
        self.box.update(results)

    @property
    def keys(self):
        """Returns a list of keys for accessing specific metrics."""
        return ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']

    def mean_results(self):
        """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
        return self.box.mean_results()

    def class_result(self, i):
        """Return the result of evaluating the performance of an object detection model on a specific class."""
        return self.box.class_result(i)

    @property
    def maps(self):
        """Returns mean Average Precision (mAP) scores per class."""
        return self.box.maps

    @property
    def fitness(self):
        """Returns the fitness of box object."""
        return self.box.fitness()

    @property
    def ap_class_index(self):
        """Returns the average precision index per class."""
        return self.box.ap_class_index

    @property
    def results_dict(self):
        """Returns dictionary of computed performance metrics and statistics."""
        return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))


class SegmentMetrics(SimpleClass):
    """

    Calculates and aggregates detection and segmentation metrics over a given set of classes.



    Args:

        save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.

        plot (bool): Whether to save the detection and segmentation plots. Default is False.

        on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.

        names (list): List of class names. Default is an empty list.



    Attributes:

        save_dir (Path): Path to the directory where the output plots should be saved.

        plot (bool): Whether to save the detection and segmentation plots.

        on_plot (func): An optional callback to pass plots path and data when they are rendered.

        names (list): List of class names.

        box (Metric): An instance of the Metric class to calculate box detection metrics.

        seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.

        speed (dict): Dictionary to store the time taken in different phases of inference.



    Methods:

        process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.

        mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.

        class_result(i): Returns the detection and segmentation metrics of class `i`.

        maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.

        fitness: Returns the fitness scores, which are a single weighted combination of metrics.

        ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).

        results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.

    """

    def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.seg = Metric()
        self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}

    def process(self, tp_b, tp_m, conf, pred_cls, target_cls):
        """

        Processes the detection and segmentation metrics over the given set of predictions.



        Args:

            tp_b (list): List of True Positive boxes.

            tp_m (list): List of True Positive masks.

            conf (list): List of confidence scores.

            pred_cls (list): List of predicted classes.

            target_cls (list): List of target classes.

        """

        results_mask = ap_per_class(tp_m,
                                    conf,
                                    pred_cls,
                                    target_cls,
                                    plot=self.plot,
                                    on_plot=self.on_plot,
                                    save_dir=self.save_dir,
                                    names=self.names,
                                    prefix='Mask')[2:]
        self.seg.nc = len(self.names)
        self.seg.update(results_mask)
        results_box = ap_per_class(tp_b,
                                   conf,
                                   pred_cls,
                                   target_cls,
                                   plot=self.plot,
                                   on_plot=self.on_plot,
                                   save_dir=self.save_dir,
                                   names=self.names,
                                   prefix='Box')[2:]
        self.box.nc = len(self.names)
        self.box.update(results_box)

    @property
    def keys(self):
        """Returns a list of keys for accessing metrics."""
        return [
            'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
            'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)']

    def mean_results(self):
        """Return the mean metrics for bounding box and segmentation results."""
        return self.box.mean_results() + self.seg.mean_results()

    def class_result(self, i):
        """Returns classification results for a specified class index."""
        return self.box.class_result(i) + self.seg.class_result(i)

    @property
    def maps(self):
        """Returns mAP scores for object detection and semantic segmentation models."""
        return self.box.maps + self.seg.maps

    @property
    def fitness(self):
        """Get the fitness score for both segmentation and bounding box models."""
        return self.seg.fitness() + self.box.fitness()

    @property
    def ap_class_index(self):
        """Boxes and masks have the same ap_class_index."""
        return self.box.ap_class_index

    @property
    def results_dict(self):
        """Returns results of object detection model for evaluation."""
        return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))


class PoseMetrics(SegmentMetrics):
    """

    Calculates and aggregates detection and pose metrics over a given set of classes.



    Args:

        save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.

        plot (bool): Whether to save the detection and segmentation plots. Default is False.

        on_plot (func): An optional callback to pass plots path and data when they are rendered. Defaults to None.

        names (list): List of class names. Default is an empty list.



    Attributes:

        save_dir (Path): Path to the directory where the output plots should be saved.

        plot (bool): Whether to save the detection and segmentation plots.

        on_plot (func): An optional callback to pass plots path and data when they are rendered.

        names (list): List of class names.

        box (Metric): An instance of the Metric class to calculate box detection metrics.

        pose (Metric): An instance of the Metric class to calculate mask segmentation metrics.

        speed (dict): Dictionary to store the time taken in different phases of inference.



    Methods:

        process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.

        mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.

        class_result(i): Returns the detection and segmentation metrics of class `i`.

        maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.

        fitness: Returns the fitness scores, which are a single weighted combination of metrics.

        ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).

        results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.

    """

    def __init__(self, save_dir=Path('.'), plot=False, on_plot=None, names=()) -> None:
        super().__init__(save_dir, plot, names)
        self.save_dir = save_dir
        self.plot = plot
        self.on_plot = on_plot
        self.names = names
        self.box = Metric()
        self.pose = Metric()
        self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}

    def __getattr__(self, attr):
        """Raises an AttributeError if an invalid attribute is accessed."""
        name = self.__class__.__name__
        raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")

    def process(self, tp_b, tp_p, conf, pred_cls, target_cls):
        """

        Processes the detection and pose metrics over the given set of predictions.



        Args:

            tp_b (list): List of True Positive boxes.

            tp_p (list): List of True Positive keypoints.

            conf (list): List of confidence scores.

            pred_cls (list): List of predicted classes.

            target_cls (list): List of target classes.

        """

        results_pose = ap_per_class(tp_p,
                                    conf,
                                    pred_cls,
                                    target_cls,
                                    plot=self.plot,
                                    on_plot=self.on_plot,
                                    save_dir=self.save_dir,
                                    names=self.names,
                                    prefix='Pose')[2:]
        self.pose.nc = len(self.names)
        self.pose.update(results_pose)
        results_box = ap_per_class(tp_b,
                                   conf,
                                   pred_cls,
                                   target_cls,
                                   plot=self.plot,
                                   on_plot=self.on_plot,
                                   save_dir=self.save_dir,
                                   names=self.names,
                                   prefix='Box')[2:]
        self.box.nc = len(self.names)
        self.box.update(results_box)

    @property
    def keys(self):
        """Returns list of evaluation metric keys."""
        return [
            'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
            'metrics/precision(P)', 'metrics/recall(P)', 'metrics/mAP50(P)', 'metrics/mAP50-95(P)']

    def mean_results(self):
        """Return the mean results of box and pose."""
        return self.box.mean_results() + self.pose.mean_results()

    def class_result(self, i):
        """Return the class-wise detection results for a specific class i."""
        return self.box.class_result(i) + self.pose.class_result(i)

    @property
    def maps(self):
        """Returns the mean average precision (mAP) per class for both box and pose detections."""
        return self.box.maps + self.pose.maps

    @property
    def fitness(self):
        """Computes classification metrics and speed using the `targets` and `pred` inputs."""
        return self.pose.fitness() + self.box.fitness()


class ClassifyMetrics(SimpleClass):
    """

    Class for computing classification metrics including top-1 and top-5 accuracy.



    Attributes:

        top1 (float): The top-1 accuracy.

        top5 (float): The top-5 accuracy.

        speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.



    Properties:

        fitness (float): The fitness of the model, which is equal to top-5 accuracy.

        results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.

        keys (List[str]): A list of keys for the results_dict.



    Methods:

        process(targets, pred): Processes the targets and predictions to compute classification metrics.

    """

    def __init__(self) -> None:
        self.top1 = 0
        self.top5 = 0
        self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}

    def process(self, targets, pred):
        """Target classes and predicted classes."""
        pred, targets = torch.cat(pred), torch.cat(targets)
        correct = (targets[:, None] == pred).float()
        acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1)  # (top1, top5) accuracy
        self.top1, self.top5 = acc.mean(0).tolist()

    @property
    def fitness(self):
        """Returns mean of top-1 and top-5 accuracies as fitness score."""
        return (self.top1 + self.top5) / 2

    @property
    def results_dict(self):
        """Returns a dictionary with model's performance metrics and fitness score."""
        return dict(zip(self.keys + ['fitness'], [self.top1, self.top5, self.fitness]))

    @property
    def keys(self):
        """Returns a list of keys for the results_dict property."""
        return ['metrics/accuracy_top1', 'metrics/accuracy_top5']