Spaces:
Running
Running
import gradio as gr | |
import torch | |
from PIL import Image | |
from ultralytics import YOLO | |
model = YOLO(r'pcb-best.pt') | |
def predict(img, conf, iou): | |
results = model.predict(img, conf=conf, iou=iou) | |
for i, r in enumerate(results): | |
# Plot results image | |
im_bgr = r.plot() # BGR-order numpy array | |
im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image | |
# Show results to screen (in supported environments) | |
return im_rgb | |
base_conf, base_iou = 0.25, 0.45 | |
title = "基于YOLO-V8的PCB电路板缺陷检测" | |
des = "鼠标点击上传图片即可检测缺陷,可通过鼠标调整预测置信度,还可点击网页最下方示例图片进行预测" | |
gr.Interface(inputs=['image',gr.Slider(maximum=1, minimum=0, value=base_conf), gr.Slider(maximum=1, minimum=0, value=base_iou)], | |
outputs=["image"], examples='example1.jpg', fn=predict, title=title, description=des).launch() | |