Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
""" | |
Convolution modules | |
""" | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn import init | |
from torch.nn.parameter import Parameter | |
__all__ = ('Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv', | |
'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv') | |
def autopad(k, p=None, d=1): # kernel, padding, dilation | |
"""Pad to 'same' shape outputs.""" | |
if d > 1: | |
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size | |
if p is None: | |
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad | |
return p | |
class Conv(nn.Module): | |
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" | |
default_act = nn.SiLU() # default activation | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): | |
"""Initialize Conv layer with given arguments including activation.""" | |
super().__init__() | |
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) | |
self.bn = nn.BatchNorm2d(c2) | |
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() | |
def forward(self, x): | |
"""Apply convolution, batch normalization and activation to input tensor.""" | |
return self.act(self.bn(self.conv(x))) | |
def forward_fuse(self, x): | |
"""Perform transposed convolution of 2D data.""" | |
return self.act(self.conv(x)) | |
class Conv2(Conv): | |
"""Simplified RepConv module with Conv fusing.""" | |
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True): | |
"""Initialize Conv layer with given arguments including activation.""" | |
super().__init__(c1, c2, k, s, p, g=g, d=d, act=act) | |
self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv | |
def forward(self, x): | |
"""Apply convolution, batch normalization and activation to input tensor.""" | |
return self.act(self.bn(self.conv(x) + self.cv2(x))) | |
def fuse_convs(self): | |
"""Fuse parallel convolutions.""" | |
w = torch.zeros_like(self.conv.weight.data) | |
i = [x // 2 for x in w.shape[2:]] | |
w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone() | |
self.conv.weight.data += w | |
self.__delattr__('cv2') | |
class LightConv(nn.Module): | |
"""Light convolution with args(ch_in, ch_out, kernel). | |
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py | |
""" | |
def __init__(self, c1, c2, k=1, act=nn.ReLU()): | |
"""Initialize Conv layer with given arguments including activation.""" | |
super().__init__() | |
self.conv1 = Conv(c1, c2, 1, act=False) | |
self.conv2 = DWConv(c2, c2, k, act=act) | |
def forward(self, x): | |
"""Apply 2 convolutions to input tensor.""" | |
return self.conv2(self.conv1(x)) | |
class DWConv(Conv): | |
"""Depth-wise convolution.""" | |
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation | |
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act) | |
class DWConvTranspose2d(nn.ConvTranspose2d): | |
"""Depth-wise transpose convolution.""" | |
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out | |
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) | |
class ConvTranspose(nn.Module): | |
"""Convolution transpose 2d layer.""" | |
default_act = nn.SiLU() # default activation | |
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True): | |
"""Initialize ConvTranspose2d layer with batch normalization and activation function.""" | |
super().__init__() | |
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn) | |
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity() | |
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() | |
def forward(self, x): | |
"""Applies transposed convolutions, batch normalization and activation to input.""" | |
return self.act(self.bn(self.conv_transpose(x))) | |
def forward_fuse(self, x): | |
"""Applies activation and convolution transpose operation to input.""" | |
return self.act(self.conv_transpose(x)) | |
class Focus(nn.Module): | |
"""Focus wh information into c-space.""" | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |
super().__init__() | |
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act) | |
# self.contract = Contract(gain=2) | |
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) | |
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1)) | |
# return self.conv(self.contract(x)) | |
class GhostConv(nn.Module): | |
"""Ghost Convolution https://github.com/huawei-noah/ghostnet.""" | |
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups | |
super().__init__() | |
c_ = c2 // 2 # hidden channels | |
self.cv1 = Conv(c1, c_, k, s, None, g, act=act) | |
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act) | |
def forward(self, x): | |
"""Forward propagation through a Ghost Bottleneck layer with skip connection.""" | |
y = self.cv1(x) | |
return torch.cat((y, self.cv2(y)), 1) | |
class RepConv(nn.Module): | |
"""RepConv is a basic rep-style block, including training and deploy status | |
This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py | |
""" | |
default_act = nn.SiLU() # default activation | |
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False): | |
super().__init__() | |
assert k == 3 and p == 1 | |
self.g = g | |
self.c1 = c1 | |
self.c2 = c2 | |
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() | |
self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None | |
self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False) | |
self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False) | |
def forward_fuse(self, x): | |
"""Forward process""" | |
return self.act(self.conv(x)) | |
def forward(self, x): | |
"""Forward process""" | |
id_out = 0 if self.bn is None else self.bn(x) | |
return self.act(self.conv1(x) + self.conv2(x) + id_out) | |
def get_equivalent_kernel_bias(self): | |
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1) | |
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2) | |
kernelid, biasid = self._fuse_bn_tensor(self.bn) | |
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid | |
def _avg_to_3x3_tensor(self, avgp): | |
channels = self.c1 | |
groups = self.g | |
kernel_size = avgp.kernel_size | |
input_dim = channels // groups | |
k = torch.zeros((channels, input_dim, kernel_size, kernel_size)) | |
k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2 | |
return k | |
def _pad_1x1_to_3x3_tensor(self, kernel1x1): | |
if kernel1x1 is None: | |
return 0 | |
else: | |
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) | |
def _fuse_bn_tensor(self, branch): | |
if branch is None: | |
return 0, 0 | |
if isinstance(branch, Conv): | |
kernel = branch.conv.weight | |
running_mean = branch.bn.running_mean | |
running_var = branch.bn.running_var | |
gamma = branch.bn.weight | |
beta = branch.bn.bias | |
eps = branch.bn.eps | |
elif isinstance(branch, nn.BatchNorm2d): | |
if not hasattr(self, 'id_tensor'): | |
input_dim = self.c1 // self.g | |
kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32) | |
for i in range(self.c1): | |
kernel_value[i, i % input_dim, 1, 1] = 1 | |
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device) | |
kernel = self.id_tensor | |
running_mean = branch.running_mean | |
running_var = branch.running_var | |
gamma = branch.weight | |
beta = branch.bias | |
eps = branch.eps | |
std = (running_var + eps).sqrt() | |
t = (gamma / std).reshape(-1, 1, 1, 1) | |
return kernel * t, beta - running_mean * gamma / std | |
def fuse_convs(self): | |
if hasattr(self, 'conv'): | |
return | |
kernel, bias = self.get_equivalent_kernel_bias() | |
self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels, | |
out_channels=self.conv1.conv.out_channels, | |
kernel_size=self.conv1.conv.kernel_size, | |
stride=self.conv1.conv.stride, | |
padding=self.conv1.conv.padding, | |
dilation=self.conv1.conv.dilation, | |
groups=self.conv1.conv.groups, | |
bias=True).requires_grad_(False) | |
self.conv.weight.data = kernel | |
self.conv.bias.data = bias | |
for para in self.parameters(): | |
para.detach_() | |
self.__delattr__('conv1') | |
self.__delattr__('conv2') | |
if hasattr(self, 'nm'): | |
self.__delattr__('nm') | |
if hasattr(self, 'bn'): | |
self.__delattr__('bn') | |
if hasattr(self, 'id_tensor'): | |
self.__delattr__('id_tensor') | |
class ChannelAttention(nn.Module): | |
"""Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet.""" | |
def __init__(self, channels: int) -> None: | |
super().__init__() | |
self.pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True) | |
self.act = nn.Sigmoid() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x * self.act(self.fc(self.pool(x))) | |
class SpatialAttention(nn.Module): | |
"""Spatial-attention module.""" | |
def __init__(self, kernel_size=7): | |
"""Initialize Spatial-attention module with kernel size argument.""" | |
super().__init__() | |
assert kernel_size in (3, 7), 'kernel size must be 3 or 7' | |
padding = 3 if kernel_size == 7 else 1 | |
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) | |
self.act = nn.Sigmoid() | |
def forward(self, x): | |
"""Apply channel and spatial attention on input for feature recalibration.""" | |
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1))) | |
class CBAM(nn.Module): | |
"""Convolutional Block Attention Module.""" | |
def __init__(self, c1, kernel_size=7): # ch_in, kernels | |
super().__init__() | |
self.channel_attention = ChannelAttention(c1) | |
self.spatial_attention = SpatialAttention(kernel_size) | |
def forward(self, x): | |
"""Applies the forward pass through C1 module.""" | |
return self.spatial_attention(self.channel_attention(x)) | |
class Concat(nn.Module): | |
"""Concatenate a list of tensors along dimension.""" | |
def __init__(self, dimension=1): | |
"""Concatenates a list of tensors along a specified dimension.""" | |
super().__init__() | |
self.d = dimension | |
def forward(self, x): | |
"""Forward pass for the YOLOv8 mask Proto module.""" | |
return torch.cat(x, self.d) | |
def channel_shuffle(x, groups=2): ##shuffle channel | |
# RESHAPE----->transpose------->Flatten | |
B, C, H, W = x.size() | |
out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous() | |
out = out.view(B, C, H, W) | |
return out | |
class GAM_Attention(nn.Module): | |
def __init__(self, c1, c2, group=True, rate=4): | |
super(GAM_Attention, self).__init__() | |
self.channel_attention = nn.Sequential( | |
nn.Linear(c1, int(c1 / rate)), | |
nn.ReLU(inplace=True), | |
nn.Linear(int(c1 / rate), c1) | |
) | |
self.spatial_attention = nn.Sequential( | |
nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1, int(c1 / rate), | |
kernel_size=7, | |
padding=3), | |
nn.BatchNorm2d(int(c1 / rate)), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(int(c1 / rate), c2, | |
kernel_size=7, | |
padding=3), | |
nn.BatchNorm2d(c2) | |
) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
x_permute = x.permute(0, 2, 3, 1).view(b, -1, c) | |
x_att_permute = self.channel_attention(x_permute).view(b, h, w, c) | |
x_channel_att = x_att_permute.permute(0, 3, 1, 2) | |
# x_channel_att=channel_shuffle(x_channel_att,4) #last shuffle | |
x = x * x_channel_att | |
x_spatial_att = self.spatial_attention(x).sigmoid() | |
x_spatial_att = channel_shuffle(x_spatial_att, 4) # last shuffle | |
out = x * x_spatial_att | |
# out=channel_shuffle(out,4) #last shuffle | |
return out | |
class GCT(nn.Module): | |
def __init__(self, channels, c=2, eps=1e-5): | |
super().__init__() | |
self.avgpool = nn.AdaptiveAvgPool2d(1) | |
self.eps = eps | |
self.c = c | |
def forward(self, x): | |
y = self.avgpool(x) | |
mean = y.mean(dim=1, keepdim=True) | |
mean_x2 = (y ** 2).mean(dim=1, keepdim=True) | |
var = mean_x2 - mean ** 2 | |
y_norm = (y - mean) / torch.sqrt(var + self.eps) | |
y_transform = torch.exp(-(y_norm ** 2 / 2 * self.c)) | |
return x * y_transform.expand_as(x) | |
class ShuffleAttention(nn.Module): | |
def __init__(self, channel=512, reduction=16, G=8): | |
super().__init__() | |
self.G = G | |
self.channel = channel | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G)) | |
self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1)) | |
self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1)) | |
self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1)) | |
self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1)) | |
self.sigmoid = nn.Sigmoid() | |
def init_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
init.kaiming_normal_(m.weight, mode='fan_out') | |
if m.bias is not None: | |
init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
init.constant_(m.weight, 1) | |
init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
init.normal_(m.weight, std=0.001) | |
if m.bias is not None: | |
init.constant_(m.bias, 0) | |
def channel_shuffle(x, groups): | |
b, c, h, w = x.shape | |
x = x.reshape(b, groups, -1, h, w) | |
x = x.permute(0, 2, 1, 3, 4) | |
# flatten | |
x = x.reshape(b, -1, h, w) | |
return x | |
def forward(self, x): | |
b, c, h, w = x.size() | |
# group into subfeatures | |
x = x.view(b * self.G, -1, h, w) # bs*G,c//G,h,w | |
# channel_split | |
x_0, x_1 = x.chunk(2, dim=1) # bs*G,c//(2*G),h,w | |
# channel attention | |
x_channel = self.avg_pool(x_0) # bs*G,c//(2*G),1,1 | |
x_channel = self.cweight * x_channel + self.cbias # bs*G,c//(2*G),1,1 | |
x_channel = x_0 * self.sigmoid(x_channel) | |
# spatial attention | |
x_spatial = self.gn(x_1) # bs*G,c//(2*G),h,w | |
x_spatial = self.sweight * x_spatial + self.sbias # bs*G,c//(2*G),h,w | |
x_spatial = x_1 * self.sigmoid(x_spatial) # bs*G,c//(2*G),h,w | |
# concatenate along channel axis | |
out = torch.cat([x_channel, x_spatial], dim=1) # bs*G,c//G,h,w | |
out = out.contiguous().view(b, -1, h, w) | |
# channel shuffle | |
out = self.channel_shuffle(out, 2) | |
return out | |
class ResBlock_CBAM(nn.Module): | |
def __init__(self, in_places, places, stride=1, downsampling=False, expansion=1): | |
super(ResBlock_CBAM, self).__init__() | |
self.expansion = expansion | |
self.downsampling = downsampling | |
self.bottleneck = nn.Sequential( | |
nn.Conv2d(in_channels=in_places, out_channels=places, kernel_size=1, stride=1, bias=False), | |
nn.BatchNorm2d(places), | |
nn.LeakyReLU(0.1, inplace=True), | |
nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False), | |
nn.BatchNorm2d(places), | |
nn.LeakyReLU(0.1, inplace=True), | |
nn.Conv2d(in_channels=places, out_channels=places * self.expansion, kernel_size=1, stride=1, | |
bias=False), | |
nn.BatchNorm2d(places * self.expansion), | |
) | |
# self.cbam = CBAM(c1=places * self.expansion, c2=places * self.expansion, ) | |
self.cbam = CBAM(c1=places * self.expansion) | |
if self.downsampling: | |
self.downsample = nn.Sequential( | |
nn.Conv2d(in_channels=in_places, out_channels=places * self.expansion, kernel_size=1, stride=stride, | |
bias=False), | |
nn.BatchNorm2d(places * self.expansion) | |
) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
residual = x | |
out = self.bottleneck(x) | |
out = self.cbam(out) | |
if self.downsampling: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ECAAttention(nn.Module): | |
"""Constructs a ECA module. | |
Args: | |
channel: Number of channels of the input feature map | |
k_size: Adaptive selection of kernel size | |
""" | |
def __init__(self, c1, k_size=3): | |
super(ECAAttention, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x): | |
# feature descriptor on the global spatial information | |
y = self.avg_pool(x) | |
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) | |
# Multi-scale information fusion | |
y = self.sigmoid(y) | |
return x * y.expand_as(x) | |
class MHSA(nn.Module): | |
def __init__(self, n_dims, width=14, height=14, heads=4, pos_emb=False): | |
super(MHSA, self).__init__() | |
self.heads = heads | |
self.query = nn.Conv2d(n_dims, n_dims, kernel_size=1) | |
self.key = nn.Conv2d(n_dims, n_dims, kernel_size=1) | |
self.value = nn.Conv2d(n_dims, n_dims, kernel_size=1) | |
self.pos = pos_emb | |
if self.pos: | |
self.rel_h_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, 1, int(height)]), | |
requires_grad=True) | |
self.rel_w_weight = nn.Parameter(torch.randn([1, heads, (n_dims) // heads, int(width), 1]), | |
requires_grad=True) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x): | |
n_batch, C, width, height = x.size() | |
q = self.query(x).view(n_batch, self.heads, C // self.heads, -1) | |
k = self.key(x).view(n_batch, self.heads, C // self.heads, -1) | |
v = self.value(x).view(n_batch, self.heads, C // self.heads, -1) | |
content_content = torch.matmul(q.permute(0, 1, 3, 2), k) # 1,C,h*w,h*w | |
c1, c2, c3, c4 = content_content.size() | |
if self.pos: | |
content_position = (self.rel_h_weight + self.rel_w_weight).view(1, self.heads, C // self.heads, -1).permute( | |
0, 1, 3, 2) # 1,4,1024,64 | |
content_position = torch.matmul(content_position, q) # ([1, 4, 1024, 256]) | |
content_position = content_position if ( | |
content_content.shape == content_position.shape) else content_position[:, :, :c3, ] | |
assert (content_content.shape == content_position.shape) | |
energy = content_content + content_position | |
else: | |
energy = content_content | |
attention = self.softmax(energy) | |
out = torch.matmul(v, attention.permute(0, 1, 3, 2)) # 1,4,256,64 | |
out = out.view(n_batch, C, width, height) | |
return out | |
import torch.nn.functional as F | |
from timm.layers.create_act import create_act_layer, get_act_layer | |
from timm.layers.helpers import make_divisible | |
from timm.layers.mlp import ConvMlp | |
from timm.layers.norm import LayerNorm2d | |
class GlobalContext(nn.Module): | |
def __init__(self, channels, use_attn=True, fuse_add=False, fuse_scale=True, init_last_zero=False, | |
rd_ratio=1. / 8, rd_channels=None, rd_divisor=1, act_layer=nn.ReLU, gate_layer='sigmoid'): | |
super(GlobalContext, self).__init__() | |
act_layer = get_act_layer(act_layer) | |
self.conv_attn = nn.Conv2d(channels, 1, kernel_size=1, bias=True) if use_attn else None | |
if rd_channels is None: | |
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) | |
if fuse_add: | |
self.mlp_add = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) | |
else: | |
self.mlp_add = None | |
if fuse_scale: | |
self.mlp_scale = ConvMlp(channels, rd_channels, act_layer=act_layer, norm_layer=LayerNorm2d) | |
else: | |
self.mlp_scale = None | |
self.gate = create_act_layer(gate_layer) | |
self.init_last_zero = init_last_zero | |
self.reset_parameters() | |
def reset_parameters(self): | |
if self.conv_attn is not None: | |
nn.init.kaiming_normal_(self.conv_attn.weight, mode='fan_in', nonlinearity='relu') | |
if self.mlp_add is not None: | |
nn.init.zeros_(self.mlp_add.fc2.weight) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
if self.conv_attn is not None: | |
attn = self.conv_attn(x).reshape(B, 1, H * W) # (B, 1, H * W) | |
attn = F.softmax(attn, dim=-1).unsqueeze(3) # (B, 1, H * W, 1) | |
context = x.reshape(B, C, H * W).unsqueeze(1) @ attn | |
context = context.view(B, C, 1, 1) | |
else: | |
context = x.mean(dim=(2, 3), keepdim=True) | |
if self.mlp_scale is not None: | |
mlp_x = self.mlp_scale(context) | |
x = x * self.gate(mlp_x) | |
if self.mlp_add is not None: | |
mlp_x = self.mlp_add(context) | |
x = x + mlp_x | |
return x | |
from timm.layers.create_conv2d import create_conv2d | |
class GatherExcite(nn.Module): | |
def __init__( | |
self, channels, feat_size=None, extra_params=False, extent=0, use_mlp=True, | |
rd_ratio=1. / 16, rd_channels=None, rd_divisor=1, add_maxpool=False, | |
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, gate_layer='sigmoid'): | |
super(GatherExcite, self).__init__() | |
self.add_maxpool = add_maxpool | |
act_layer = get_act_layer(act_layer) | |
self.extent = extent | |
if extra_params: | |
self.gather = nn.Sequential() | |
if extent == 0: | |
assert feat_size is not None, 'spatial feature size must be specified for global extent w/ params' | |
self.gather.add_module( | |
'conv1', create_conv2d(channels, channels, kernel_size=feat_size, stride=1, depthwise=True)) | |
if norm_layer: | |
self.gather.add_module(f'norm1', nn.BatchNorm2d(channels)) | |
else: | |
assert extent % 2 == 0 | |
num_conv = int(math.log2(extent)) | |
for i in range(num_conv): | |
self.gather.add_module( | |
f'conv{i + 1}', | |
create_conv2d(channels, channels, kernel_size=3, stride=2, depthwise=True)) | |
if norm_layer: | |
self.gather.add_module(f'norm{i + 1}', nn.BatchNorm2d(channels)) | |
if i != num_conv - 1: | |
self.gather.add_module(f'act{i + 1}', act_layer(inplace=True)) | |
else: | |
self.gather = None | |
if self.extent == 0: | |
self.gk = 0 | |
self.gs = 0 | |
else: | |
assert extent % 2 == 0 | |
self.gk = self.extent * 2 - 1 | |
self.gs = self.extent | |
if not rd_channels: | |
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) | |
self.mlp = ConvMlp(channels, rd_channels, act_layer=act_layer) if use_mlp else nn.Identity() | |
self.gate = create_act_layer(gate_layer) | |
def forward(self, x): | |
size = x.shape[-2:] | |
if self.gather is not None: | |
x_ge = self.gather(x) | |
else: | |
if self.extent == 0: | |
# global extent | |
x_ge = x.mean(dim=(2, 3), keepdims=True) | |
if self.add_maxpool: | |
# experimental codepath, may remove or change | |
x_ge = 0.5 * x_ge + 0.5 * x.amax((2, 3), keepdim=True) | |
else: | |
x_ge = F.avg_pool2d( | |
x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2, count_include_pad=False) | |
if self.add_maxpool: | |
# experimental codepath, may remove or change | |
x_ge = 0.5 * x_ge + 0.5 * F.max_pool2d(x, kernel_size=self.gk, stride=self.gs, padding=self.gk // 2) | |
x_ge = self.mlp(x_ge) | |
if x_ge.shape[-1] != 1 or x_ge.shape[-2] != 1: | |
x_ge = F.interpolate(x_ge, size=size) | |
return x * self.gate(x_ge) | |