Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import contextlib | |
import inspect | |
import logging.config | |
import os | |
import platform | |
import re | |
import subprocess | |
import sys | |
import threading | |
import urllib | |
import uuid | |
from pathlib import Path | |
from types import SimpleNamespace | |
from typing import Union | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import yaml | |
from ultralytics import __version__ | |
# PyTorch Multi-GPU DDP Constants | |
RANK = int(os.getenv('RANK', -1)) | |
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html | |
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) | |
# Other Constants | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[1] # YOLO | |
DEFAULT_CFG_PATH = ROOT / 'cfg/default.yaml' | |
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads | |
AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode | |
VERBOSE = str(os.getenv('YOLO_VERBOSE', True)).lower() == 'true' # global verbose mode | |
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format | |
LOGGING_NAME = 'ultralytics' | |
MACOS, LINUX, WINDOWS = (platform.system() == x for x in ['Darwin', 'Linux', 'Windows']) # environment booleans | |
ARM64 = platform.machine() in ('arm64', 'aarch64') # ARM64 booleans | |
HELP_MSG = \ | |
""" | |
Usage examples for running YOLOv8: | |
1. Install the ultralytics package: | |
pip install ultralytics | |
2. Use the Python SDK: | |
from ultralytics import YOLO | |
# Load a model | |
model = YOLO('yolov8n.yaml') # build a new model from scratch | |
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training) | |
# Use the model | |
results = model.train(data="coco128.yaml", epochs=3) # train the model | |
results = model.val() # evaluate model performance on the validation set | |
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image | |
success = model.export(format='onnx') # export the model to ONNX format | |
3. Use the command line interface (CLI): | |
YOLOv8 'yolo' CLI commands use the following syntax: | |
yolo TASK MODE ARGS | |
Where TASK (optional) is one of [detect, segment, classify] | |
MODE (required) is one of [train, val, predict, export] | |
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. | |
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg' | |
- Train a detection model for 10 epochs with an initial learning_rate of 0.01 | |
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 | |
- Predict a YouTube video using a pretrained segmentation model at image size 320: | |
yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320 | |
- Val a pretrained detection model at batch-size 1 and image size 640: | |
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 | |
- Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) | |
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 | |
- Run special commands: | |
yolo help | |
yolo checks | |
yolo version | |
yolo settings | |
yolo copy-cfg | |
yolo cfg | |
Docs: https://docs.ultralytics.com | |
Community: https://community.ultralytics.com | |
GitHub: https://github.com/ultralytics/ultralytics | |
""" | |
# Settings | |
torch.set_printoptions(linewidth=320, precision=4, profile='default') | |
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 | |
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) | |
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads | |
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # for deterministic training | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # suppress verbose TF compiler warnings in Colab | |
class SimpleClass: | |
""" | |
Ultralytics SimpleClass is a base class providing helpful string representation, error reporting, and attribute | |
access methods for easier debugging and usage. | |
""" | |
def __str__(self): | |
"""Return a human-readable string representation of the object.""" | |
attr = [] | |
for a in dir(self): | |
v = getattr(self, a) | |
if not callable(v) and not a.startswith('_'): | |
if isinstance(v, SimpleClass): | |
# Display only the module and class name for subclasses | |
s = f'{a}: {v.__module__}.{v.__class__.__name__} object' | |
else: | |
s = f'{a}: {repr(v)}' | |
attr.append(s) | |
return f'{self.__module__}.{self.__class__.__name__} object with attributes:\n\n' + '\n'.join(attr) | |
def __repr__(self): | |
"""Return a machine-readable string representation of the object.""" | |
return self.__str__() | |
def __getattr__(self, attr): | |
"""Custom attribute access error message with helpful information.""" | |
name = self.__class__.__name__ | |
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") | |
class IterableSimpleNamespace(SimpleNamespace): | |
""" | |
Ultralytics IterableSimpleNamespace is an extension class of SimpleNamespace that adds iterable functionality and | |
enables usage with dict() and for loops. | |
""" | |
def __iter__(self): | |
"""Return an iterator of key-value pairs from the namespace's attributes.""" | |
return iter(vars(self).items()) | |
def __str__(self): | |
"""Return a human-readable string representation of the object.""" | |
return '\n'.join(f'{k}={v}' for k, v in vars(self).items()) | |
def __getattr__(self, attr): | |
"""Custom attribute access error message with helpful information.""" | |
name = self.__class__.__name__ | |
raise AttributeError(f""" | |
'{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics | |
'default.yaml' file.\nPlease update your code with 'pip install -U ultralytics' and if necessary replace | |
{DEFAULT_CFG_PATH} with the latest version from | |
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/default.yaml | |
""") | |
def get(self, key, default=None): | |
"""Return the value of the specified key if it exists; otherwise, return the default value.""" | |
return getattr(self, key, default) | |
def plt_settings(rcparams=None, backend='Agg'): | |
""" | |
Decorator to temporarily set rc parameters and the backend for a plotting function. | |
Usage: | |
decorator: @plt_settings({"font.size": 12}) | |
context manager: with plt_settings({"font.size": 12}): | |
Args: | |
rcparams (dict): Dictionary of rc parameters to set. | |
backend (str, optional): Name of the backend to use. Defaults to 'Agg'. | |
Returns: | |
(Callable): Decorated function with temporarily set rc parameters and backend. This decorator can be | |
applied to any function that needs to have specific matplotlib rc parameters and backend for its execution. | |
""" | |
if rcparams is None: | |
rcparams = {'font.size': 11} | |
def decorator(func): | |
"""Decorator to apply temporary rc parameters and backend to a function.""" | |
def wrapper(*args, **kwargs): | |
"""Sets rc parameters and backend, calls the original function, and restores the settings.""" | |
original_backend = plt.get_backend() | |
plt.switch_backend(backend) | |
with plt.rc_context(rcparams): | |
result = func(*args, **kwargs) | |
plt.switch_backend(original_backend) | |
return result | |
return wrapper | |
return decorator | |
def set_logging(name=LOGGING_NAME, verbose=True): | |
"""Sets up logging for the given name.""" | |
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings | |
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR | |
logging.config.dictConfig({ | |
'version': 1, | |
'disable_existing_loggers': False, | |
'formatters': { | |
name: { | |
'format': '%(message)s'}}, | |
'handlers': { | |
name: { | |
'class': 'logging.StreamHandler', | |
'formatter': name, | |
'level': level}}, | |
'loggers': { | |
name: { | |
'level': level, | |
'handlers': [name], | |
'propagate': False}}}) | |
def emojis(string=''): | |
"""Return platform-dependent emoji-safe version of string.""" | |
return string.encode().decode('ascii', 'ignore') if WINDOWS else string | |
class EmojiFilter(logging.Filter): | |
""" | |
A custom logging filter class for removing emojis in log messages. | |
This filter is particularly useful for ensuring compatibility with Windows terminals | |
that may not support the display of emojis in log messages. | |
""" | |
def filter(self, record): | |
"""Filter logs by emoji unicode characters on windows.""" | |
record.msg = emojis(record.msg) | |
return super().filter(record) | |
# Set logger | |
set_logging(LOGGING_NAME, verbose=VERBOSE) # run before defining LOGGER | |
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.) | |
if WINDOWS: # emoji-safe logging | |
LOGGER.addFilter(EmojiFilter()) | |
class ThreadingLocked: | |
""" | |
A decorator class for ensuring thread-safe execution of a function or method. | |
This class can be used as a decorator to make sure that if the decorated function | |
is called from multiple threads, only one thread at a time will be able to execute the function. | |
Attributes: | |
lock (threading.Lock): A lock object used to manage access to the decorated function. | |
Usage: | |
@ThreadingLocked() | |
def my_function(): | |
# Your code here | |
pass | |
""" | |
def __init__(self): | |
self.lock = threading.Lock() | |
def __call__(self, f): | |
from functools import wraps | |
def decorated(*args, **kwargs): | |
with self.lock: | |
return f(*args, **kwargs) | |
return decorated | |
def yaml_save(file='data.yaml', data=None): | |
""" | |
Save YAML data to a file. | |
Args: | |
file (str, optional): File name. Default is 'data.yaml'. | |
data (dict): Data to save in YAML format. | |
Returns: | |
(None): Data is saved to the specified file. | |
""" | |
if data is None: | |
data = {} | |
file = Path(file) | |
if not file.parent.exists(): | |
# Create parent directories if they don't exist | |
file.parent.mkdir(parents=True, exist_ok=True) | |
# Convert Path objects to strings | |
for k, v in data.items(): | |
if isinstance(v, Path): | |
data[k] = str(v) | |
# Dump data to file in YAML format | |
with open(file, 'w') as f: | |
yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True) | |
def yaml_load(file='data.yaml', append_filename=False): | |
""" | |
Load YAML data from a file. | |
Args: | |
file (str, optional): File name. Default is 'data.yaml'. | |
append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False. | |
Returns: | |
(dict): YAML data and file name. | |
""" | |
with open(file, errors='ignore', encoding='utf-8') as f: | |
s = f.read() # string | |
# Remove special characters | |
if not s.isprintable(): | |
s = re.sub(r'[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+', '', s) | |
# Add YAML filename to dict and return | |
return {**yaml.safe_load(s), 'yaml_file': str(file)} if append_filename else yaml.safe_load(s) | |
def yaml_print(yaml_file: Union[str, Path, dict]) -> None: | |
""" | |
Pretty prints a yaml file or a yaml-formatted dictionary. | |
Args: | |
yaml_file: The file path of the yaml file or a yaml-formatted dictionary. | |
Returns: | |
None | |
""" | |
yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file | |
dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True) | |
LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}") | |
# Default configuration | |
DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH) | |
for k, v in DEFAULT_CFG_DICT.items(): | |
if isinstance(v, str) and v.lower() == 'none': | |
DEFAULT_CFG_DICT[k] = None | |
DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys() | |
DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT) | |
def is_colab(): | |
""" | |
Check if the current script is running inside a Google Colab notebook. | |
Returns: | |
(bool): True if running inside a Colab notebook, False otherwise. | |
""" | |
return 'COLAB_RELEASE_TAG' in os.environ or 'COLAB_BACKEND_VERSION' in os.environ | |
def is_kaggle(): | |
""" | |
Check if the current script is running inside a Kaggle kernel. | |
Returns: | |
(bool): True if running inside a Kaggle kernel, False otherwise. | |
""" | |
return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' | |
def is_jupyter(): | |
""" | |
Check if the current script is running inside a Jupyter Notebook. | |
Verified on Colab, Jupyterlab, Kaggle, Paperspace. | |
Returns: | |
(bool): True if running inside a Jupyter Notebook, False otherwise. | |
""" | |
with contextlib.suppress(Exception): | |
from IPython import get_ipython | |
return get_ipython() is not None | |
return False | |
def is_docker() -> bool: | |
""" | |
Determine if the script is running inside a Docker container. | |
Returns: | |
(bool): True if the script is running inside a Docker container, False otherwise. | |
""" | |
file = Path('/proc/self/cgroup') | |
if file.exists(): | |
with open(file) as f: | |
return 'docker' in f.read() | |
else: | |
return False | |
def is_online() -> bool: | |
""" | |
Check internet connectivity by attempting to connect to a known online host. | |
Returns: | |
(bool): True if connection is successful, False otherwise. | |
""" | |
import socket | |
for host in '1.1.1.1', '8.8.8.8', '223.5.5.5': # Cloudflare, Google, AliDNS: | |
try: | |
test_connection = socket.create_connection(address=(host, 53), timeout=2) | |
except (socket.timeout, socket.gaierror, OSError): | |
continue | |
else: | |
# If the connection was successful, close it to avoid a ResourceWarning | |
test_connection.close() | |
return True | |
return False | |
ONLINE = is_online() | |
def is_pip_package(filepath: str = __name__) -> bool: | |
""" | |
Determines if the file at the given filepath is part of a pip package. | |
Args: | |
filepath (str): The filepath to check. | |
Returns: | |
(bool): True if the file is part of a pip package, False otherwise. | |
""" | |
import importlib.util | |
# Get the spec for the module | |
spec = importlib.util.find_spec(filepath) | |
# Return whether the spec is not None and the origin is not None (indicating it is a package) | |
return spec is not None and spec.origin is not None | |
def is_dir_writeable(dir_path: Union[str, Path]) -> bool: | |
""" | |
Check if a directory is writeable. | |
Args: | |
dir_path (str | Path): The path to the directory. | |
Returns: | |
(bool): True if the directory is writeable, False otherwise. | |
""" | |
return os.access(str(dir_path), os.W_OK) | |
def is_pytest_running(): | |
""" | |
Determines whether pytest is currently running or not. | |
Returns: | |
(bool): True if pytest is running, False otherwise. | |
""" | |
return ('PYTEST_CURRENT_TEST' in os.environ) or ('pytest' in sys.modules) or ('pytest' in Path(sys.argv[0]).stem) | |
def is_github_actions_ci() -> bool: | |
""" | |
Determine if the current environment is a GitHub Actions CI Python runner. | |
Returns: | |
(bool): True if the current environment is a GitHub Actions CI Python runner, False otherwise. | |
""" | |
return 'GITHUB_ACTIONS' in os.environ and 'RUNNER_OS' in os.environ and 'RUNNER_TOOL_CACHE' in os.environ | |
def is_git_dir(): | |
""" | |
Determines whether the current file is part of a git repository. | |
If the current file is not part of a git repository, returns None. | |
Returns: | |
(bool): True if current file is part of a git repository. | |
""" | |
return get_git_dir() is not None | |
def get_git_dir(): | |
""" | |
Determines whether the current file is part of a git repository and if so, returns the repository root directory. | |
If the current file is not part of a git repository, returns None. | |
Returns: | |
(Path | None): Git root directory if found or None if not found. | |
""" | |
for d in Path(__file__).parents: | |
if (d / '.git').is_dir(): | |
return d | |
return None # no .git dir found | |
def get_git_origin_url(): | |
""" | |
Retrieves the origin URL of a git repository. | |
Returns: | |
(str | None): The origin URL of the git repository. | |
""" | |
if is_git_dir(): | |
with contextlib.suppress(subprocess.CalledProcessError): | |
origin = subprocess.check_output(['git', 'config', '--get', 'remote.origin.url']) | |
return origin.decode().strip() | |
return None # if not git dir or on error | |
def get_git_branch(): | |
""" | |
Returns the current git branch name. If not in a git repository, returns None. | |
Returns: | |
(str | None): The current git branch name. | |
""" | |
if is_git_dir(): | |
with contextlib.suppress(subprocess.CalledProcessError): | |
origin = subprocess.check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) | |
return origin.decode().strip() | |
return None # if not git dir or on error | |
def get_default_args(func): | |
"""Returns a dictionary of default arguments for a function. | |
Args: | |
func (callable): The function to inspect. | |
Returns: | |
(dict): A dictionary where each key is a parameter name, and each value is the default value of that parameter. | |
""" | |
signature = inspect.signature(func) | |
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} | |
def get_user_config_dir(sub_dir='Ultralytics'): | |
""" | |
Get the user config directory. | |
Args: | |
sub_dir (str): The name of the subdirectory to create. | |
Returns: | |
(Path): The path to the user config directory. | |
""" | |
# Return the appropriate config directory for each operating system | |
if WINDOWS: | |
path = Path.home() / 'AppData' / 'Roaming' / sub_dir | |
elif MACOS: # macOS | |
path = Path.home() / 'Library' / 'Application Support' / sub_dir | |
elif LINUX: | |
path = Path.home() / '.config' / sub_dir | |
else: | |
raise ValueError(f'Unsupported operating system: {platform.system()}') | |
# GCP and AWS lambda fix, only /tmp is writeable | |
if not is_dir_writeable(path.parent): | |
LOGGER.warning(f"WARNING ⚠️ user config directory '{path}' is not writeable, defaulting to '/tmp' or CWD." | |
'Alternatively you can define a YOLO_CONFIG_DIR environment variable for this path.') | |
path = Path('/tmp') / sub_dir if is_dir_writeable('/tmp') else Path().cwd() / sub_dir | |
# Create the subdirectory if it does not exist | |
path.mkdir(parents=True, exist_ok=True) | |
return path | |
USER_CONFIG_DIR = Path(os.getenv('YOLO_CONFIG_DIR') or get_user_config_dir()) # Ultralytics settings dir | |
SETTINGS_YAML = USER_CONFIG_DIR / 'settings.yaml' | |
def colorstr(*input): | |
"""Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world').""" | |
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string | |
colors = { | |
'black': '\033[30m', # basic colors | |
'red': '\033[31m', | |
'green': '\033[32m', | |
'yellow': '\033[33m', | |
'blue': '\033[34m', | |
'magenta': '\033[35m', | |
'cyan': '\033[36m', | |
'white': '\033[37m', | |
'bright_black': '\033[90m', # bright colors | |
'bright_red': '\033[91m', | |
'bright_green': '\033[92m', | |
'bright_yellow': '\033[93m', | |
'bright_blue': '\033[94m', | |
'bright_magenta': '\033[95m', | |
'bright_cyan': '\033[96m', | |
'bright_white': '\033[97m', | |
'end': '\033[0m', # misc | |
'bold': '\033[1m', | |
'underline': '\033[4m'} | |
return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] | |
class TryExcept(contextlib.ContextDecorator): | |
"""YOLOv8 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager.""" | |
def __init__(self, msg='', verbose=True): | |
"""Initialize TryExcept class with optional message and verbosity settings.""" | |
self.msg = msg | |
self.verbose = verbose | |
def __enter__(self): | |
"""Executes when entering TryExcept context, initializes instance.""" | |
pass | |
def __exit__(self, exc_type, value, traceback): | |
"""Defines behavior when exiting a 'with' block, prints error message if necessary.""" | |
if self.verbose and value: | |
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}")) | |
return True | |
def threaded(func): | |
"""Multi-threads a target function and returns thread. Usage: @threaded decorator.""" | |
def wrapper(*args, **kwargs): | |
"""Multi-threads a given function and returns the thread.""" | |
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) | |
thread.start() | |
return thread | |
return wrapper | |
def set_sentry(): | |
""" | |
Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and | |
sync=True in settings. Run 'yolo settings' to see and update settings YAML file. | |
Conditions required to send errors (ALL conditions must be met or no errors will be reported): | |
- sentry_sdk package is installed | |
- sync=True in YOLO settings | |
- pytest is not running | |
- running in a pip package installation | |
- running in a non-git directory | |
- running with rank -1 or 0 | |
- online environment | |
- CLI used to run package (checked with 'yolo' as the name of the main CLI command) | |
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError | |
exceptions and to exclude events with 'out of memory' in their exception message. | |
Additionally, the function sets custom tags and user information for Sentry events. | |
""" | |
def before_send(event, hint): | |
""" | |
Modify the event before sending it to Sentry based on specific exception types and messages. | |
Args: | |
event (dict): The event dictionary containing information about the error. | |
hint (dict): A dictionary containing additional information about the error. | |
Returns: | |
dict: The modified event or None if the event should not be sent to Sentry. | |
""" | |
if 'exc_info' in hint: | |
exc_type, exc_value, tb = hint['exc_info'] | |
if exc_type in (KeyboardInterrupt, FileNotFoundError) \ | |
or 'out of memory' in str(exc_value): | |
return None # do not send event | |
event['tags'] = { | |
'sys_argv': sys.argv[0], | |
'sys_argv_name': Path(sys.argv[0]).name, | |
'install': 'git' if is_git_dir() else 'pip' if is_pip_package() else 'other', | |
'os': ENVIRONMENT} | |
return event | |
if SETTINGS['sync'] and \ | |
RANK in (-1, 0) and \ | |
Path(sys.argv[0]).name == 'yolo' and \ | |
not TESTS_RUNNING and \ | |
ONLINE and \ | |
is_pip_package() and \ | |
not is_git_dir(): | |
# If sentry_sdk package is not installed then return and do not use Sentry | |
try: | |
import sentry_sdk # noqa | |
except ImportError: | |
return | |
sentry_sdk.init( | |
dsn='https://5ff1556b71594bfea135ff0203a0d290@o4504521589325824.ingest.sentry.io/4504521592406016', | |
debug=False, | |
traces_sample_rate=1.0, | |
release=__version__, | |
environment='production', # 'dev' or 'production' | |
before_send=before_send, | |
ignore_errors=[KeyboardInterrupt, FileNotFoundError]) | |
sentry_sdk.set_user({'id': SETTINGS['uuid']}) # SHA-256 anonymized UUID hash | |
# Disable all sentry logging | |
for logger in 'sentry_sdk', 'sentry_sdk.errors': | |
logging.getLogger(logger).setLevel(logging.CRITICAL) | |
class SettingsManager(dict): | |
""" | |
Manages Ultralytics settings stored in a YAML file. | |
Args: | |
file (str | Path): Path to the Ultralytics settings YAML file. Default is USER_CONFIG_DIR / 'settings.yaml'. | |
version (str): Settings version. In case of local version mismatch, new default settings will be saved. | |
""" | |
def __init__(self, file=SETTINGS_YAML, version='0.0.4'): | |
import copy | |
import hashlib | |
from ultralytics.utils.checks import check_version | |
from ultralytics.utils.torch_utils import torch_distributed_zero_first | |
git_dir = get_git_dir() | |
root = git_dir or Path() | |
datasets_root = (root.parent if git_dir and is_dir_writeable(root.parent) else root).resolve() | |
self.file = Path(file) | |
self.version = version | |
self.defaults = { | |
'settings_version': version, | |
'datasets_dir': str(datasets_root / 'datasets'), | |
'weights_dir': str(root / 'weights'), | |
'runs_dir': str(root / 'runs'), | |
'uuid': hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), | |
'sync': True, | |
'api_key': '', | |
'clearml': True, # integrations | |
'comet': True, | |
'dvc': True, | |
'hub': True, | |
'mlflow': True, | |
'neptune': True, | |
'raytune': True, | |
'tensorboard': True, | |
'wandb': True} | |
super().__init__(copy.deepcopy(self.defaults)) | |
with torch_distributed_zero_first(RANK): | |
if not self.file.exists(): | |
self.save() | |
self.load() | |
correct_keys = self.keys() == self.defaults.keys() | |
correct_types = all(type(a) == type(b) for a, b in zip(self.values(), self.defaults.values())) | |
correct_version = check_version(self['settings_version'], self.version) | |
if not (correct_keys and correct_types and correct_version): | |
LOGGER.warning( | |
'WARNING ⚠️ Ultralytics settings reset to default values. This may be due to a possible problem ' | |
'with your settings or a recent ultralytics package update. ' | |
f"\nView settings with 'yolo settings' or at '{self.file}'" | |
"\nUpdate settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'.") | |
self.reset() | |
def load(self): | |
"""Loads settings from the YAML file.""" | |
super().update(yaml_load(self.file)) | |
def save(self): | |
"""Saves the current settings to the YAML file.""" | |
yaml_save(self.file, dict(self)) | |
def update(self, *args, **kwargs): | |
"""Updates a setting value in the current settings.""" | |
super().update(*args, **kwargs) | |
self.save() | |
def reset(self): | |
"""Resets the settings to default and saves them.""" | |
self.clear() | |
self.update(self.defaults) | |
self.save() | |
def deprecation_warn(arg, new_arg, version=None): | |
"""Issue a deprecation warning when a deprecated argument is used, suggesting an updated argument.""" | |
if not version: | |
version = float(__version__[:3]) + 0.2 # deprecate after 2nd major release | |
LOGGER.warning(f"WARNING ⚠️ '{arg}' is deprecated and will be removed in 'ultralytics {version}' in the future. " | |
f"Please use '{new_arg}' instead.") | |
def clean_url(url): | |
"""Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt.""" | |
url = Path(url).as_posix().replace(':/', '://') # Pathlib turns :// -> :/, as_posix() for Windows | |
return urllib.parse.unquote(url).split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth | |
def url2file(url): | |
"""Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt.""" | |
return Path(clean_url(url)).name | |
# Run below code on utils init ------------------------------------------------------------------------------------ | |
# Check first-install steps | |
PREFIX = colorstr('Ultralytics: ') | |
SETTINGS = SettingsManager() # initialize settings | |
DATASETS_DIR = Path(SETTINGS['datasets_dir']) # global datasets directory | |
ENVIRONMENT = 'Colab' if is_colab() else 'Kaggle' if is_kaggle() else 'Jupyter' if is_jupyter() else \ | |
'Docker' if is_docker() else platform.system() | |
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci() | |
set_sentry() | |
# Apply monkey patches if the script is being run from within the parent directory of the script's location | |
from .patches import imread, imshow, imwrite | |
# torch.save = torch_save | |
if Path(inspect.stack()[0].filename).parent.parent.as_posix() in inspect.stack()[-1].filename: | |
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow | |