Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import matplotlib.image as mpimg | |
import matplotlib.pyplot as plt | |
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING | |
from ultralytics.utils.torch_utils import model_info_for_loggers | |
try: | |
import neptune | |
from neptune.types import File | |
assert not TESTS_RUNNING # do not log pytest | |
assert hasattr(neptune, '__version__') | |
assert SETTINGS['neptune'] is True # verify integration is enabled | |
except (ImportError, AssertionError): | |
neptune = None | |
run = None # NeptuneAI experiment logger instance | |
def _log_scalars(scalars, step=0): | |
"""Log scalars to the NeptuneAI experiment logger.""" | |
if run: | |
for k, v in scalars.items(): | |
run[k].append(value=v, step=step) | |
def _log_images(imgs_dict, group=''): | |
"""Log scalars to the NeptuneAI experiment logger.""" | |
if run: | |
for k, v in imgs_dict.items(): | |
run[f'{group}/{k}'].upload(File(v)) | |
def _log_plot(title, plot_path): | |
"""Log plots to the NeptuneAI experiment logger.""" | |
""" | |
Log image as plot in the plot section of NeptuneAI | |
arguments: | |
title (str) Title of the plot | |
plot_path (PosixPath or str) Path to the saved image file | |
""" | |
img = mpimg.imread(plot_path) | |
fig = plt.figure() | |
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks | |
ax.imshow(img) | |
run[f'Plots/{title}'].upload(fig) | |
def on_pretrain_routine_start(trainer): | |
"""Callback function called before the training routine starts.""" | |
try: | |
global run | |
run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8']) | |
run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()} | |
except Exception as e: | |
LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}') | |
def on_train_epoch_end(trainer): | |
"""Callback function called at end of each training epoch.""" | |
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1) | |
_log_scalars(trainer.lr, trainer.epoch + 1) | |
if trainer.epoch == 1: | |
_log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic') | |
def on_fit_epoch_end(trainer): | |
"""Callback function called at end of each fit (train+val) epoch.""" | |
if run and trainer.epoch == 0: | |
run['Configuration/Model'] = model_info_for_loggers(trainer) | |
_log_scalars(trainer.metrics, trainer.epoch + 1) | |
def on_val_end(validator): | |
"""Callback function called at end of each validation.""" | |
if run: | |
# Log val_labels and val_pred | |
_log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation') | |
def on_train_end(trainer): | |
"""Callback function called at end of training.""" | |
if run: | |
# Log final results, CM matrix + PR plots | |
files = [ | |
'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png', | |
*(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] | |
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter | |
for f in files: | |
_log_plot(title=f.stem, plot_path=f) | |
# Log the final model | |
run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str( | |
trainer.best))) | |
callbacks = { | |
'on_pretrain_routine_start': on_pretrain_routine_start, | |
'on_train_epoch_end': on_train_epoch_end, | |
'on_fit_epoch_end': on_fit_epoch_end, | |
'on_val_end': on_val_end, | |
'on_train_end': on_train_end} if neptune else {} | |