llzzyy233 commited on
Commit
da0e90e
1 Parent(s): 5340118

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -8
app.py CHANGED
@@ -2,26 +2,72 @@ import gradio as gr
2
  import torch
3
  from PIL import Image
4
  from ultralytics import YOLO
 
 
 
 
 
 
5
 
6
 
7
- model = YOLO(r'pcb-best.pt')
8
  def predict(img, conf, iou):
9
  results = model.predict(img, conf=conf, iou=iou)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  for i, r in enumerate(results):
11
  # Plot results image
12
  im_bgr = r.plot() # BGR-order numpy array
13
  im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image
14
 
15
  # Show results to screen (in supported environments)
16
- return im_rgb
17
 
18
 
19
  base_conf, base_iou = 0.25, 0.45
20
  title = "基于YOLO-V8的PCB电路板缺陷检测"
21
  des = "鼠标点击上传图片即可检测缺陷,可通过鼠标调整预测置信度,还可点击网页最下方示例图片进行预测"
22
- interface = gr.Interface(inputs=['image',gr.Slider(maximum=1, minimum=0, value=base_conf), gr.Slider(maximum=1, minimum=0, value=base_iou)],
23
- outputs=["image"], fn=predict, title=title, description=des, examples=[["example1.jpg", base_conf, base_iou],
24
- ["example2.jpg", base_conf, base_iou],
25
- ["example3.jpg", base_conf, base_iou]])
26
-
27
- interface.launch()
 
 
2
  import torch
3
  from PIL import Image
4
  from ultralytics import YOLO
5
+ import matplotlib.pyplot as plt
6
+ import io
7
+ from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
8
+ plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
9
+ plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
10
+ model = YOLO(r'pcb-best.pt')
11
 
12
 
 
13
  def predict(img, conf, iou):
14
  results = model.predict(img, conf=conf, iou=iou)
15
+ name = results[0].names
16
+ cls = results[0].boxes.cls
17
+ copper = 0
18
+ mousebite = 0
19
+ open_defect = 0
20
+ pin_hole = 0
21
+ short = 0
22
+ spur = 0
23
+ for i in cls:
24
+ if i == 0:
25
+ copper += 1
26
+ elif i == 1:
27
+ mousebite += 1
28
+ elif i == 2:
29
+ open_defect += 1
30
+ elif i == 3:
31
+ pin_hole += 1
32
+ elif i == 4:
33
+ short += 1
34
+ elif i == 5:
35
+ spur += 1
36
+ # 绘制柱状图
37
+ fig, ax = plt.subplots()
38
+ categories = ['Copper', 'Mousebite', 'Open Defect', 'Pin Hole', 'Short', 'Spur']
39
+ counts = [copper, mousebite, open_defect, pin_hole, short, spur]
40
+ ax.bar(categories, counts)
41
+ ax.set_title('缺陷类别计数')
42
+ plt.ylim(0,5)
43
+ ax.set_xlabel('缺陷类别')
44
+ ax.set_ylabel('数目')
45
+ # 将图表保存为字节流
46
+ buf = io.BytesIO()
47
+ canvas = FigureCanvas(fig)
48
+ canvas.print_png(buf)
49
+ plt.close(fig) # 关闭图形,释放资源
50
+
51
+ # 将字节流转换为PIL Image
52
+ image_png = Image.open(buf)
53
+ # 绘制并返回结果图片和类别计数图表
54
+
55
  for i, r in enumerate(results):
56
  # Plot results image
57
  im_bgr = r.plot() # BGR-order numpy array
58
  im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image
59
 
60
  # Show results to screen (in supported environments)
61
+ return im_rgb, image_png
62
 
63
 
64
  base_conf, base_iou = 0.25, 0.45
65
  title = "基于YOLO-V8的PCB电路板缺陷检测"
66
  des = "鼠标点击上传图片即可检测缺陷,可通过鼠标调整预测置信度,还可点击网页最下方示例图片进行预测"
67
+ interface = gr.Interface(
68
+ inputs=['image', gr.Slider(maximum=1, minimum=0, value=base_conf), gr.Slider(maximum=1, minimum=0, value=base_iou)],
69
+ outputs=["image", 'image'], fn=predict, title=title, description=des,
70
+ examples=[["example1.jpg", base_conf, base_iou],
71
+ ["example2.jpg", base_conf, base_iou],
72
+ ["example3.jpg", base_conf, base_iou]])
73
+ interface.launch()