Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,8 @@ import torch
|
|
3 |
from PIL import Image
|
4 |
from ultralytics import YOLO
|
5 |
|
6 |
-
model = YOLO(r'pcb-best.pt')
|
7 |
|
|
|
8 |
def predict(img, conf, iou):
|
9 |
results = model.predict(img, conf=conf, iou=iou)
|
10 |
for i, r in enumerate(results):
|
@@ -19,6 +19,9 @@ def predict(img, conf, iou):
|
|
19 |
base_conf, base_iou = 0.25, 0.45
|
20 |
title = "基于YOLO-V8的PCB电路板缺陷检测"
|
21 |
des = "鼠标点击上传图片即可检测缺陷,可通过鼠标调整预测置信度,还可点击网页最下方示例图片进行预测"
|
22 |
-
gr.Interface(inputs=['image',gr.Slider(maximum=1, minimum=0, value=base_conf), gr.Slider(maximum=1, minimum=0, value=base_iou)],
|
23 |
-
outputs=["image"],
|
|
|
|
|
24 |
|
|
|
|
3 |
from PIL import Image
|
4 |
from ultralytics import YOLO
|
5 |
|
|
|
6 |
|
7 |
+
model = YOLO(r'pcb-best.pt')
|
8 |
def predict(img, conf, iou):
|
9 |
results = model.predict(img, conf=conf, iou=iou)
|
10 |
for i, r in enumerate(results):
|
|
|
19 |
base_conf, base_iou = 0.25, 0.45
|
20 |
title = "基于YOLO-V8的PCB电路板缺陷检测"
|
21 |
des = "鼠标点击上传图片即可检测缺陷,可通过鼠标调整预测置信度,还可点击网页最下方示例图片进行预测"
|
22 |
+
interface = gr.Interface(inputs=['image',gr.Slider(maximum=1, minimum=0, value=base_conf), gr.Slider(maximum=1, minimum=0, value=base_iou)],
|
23 |
+
outputs=["image"], fn=predict, title=title, description=des, examples=[["example1.jpg", base_conf, base_iou],
|
24 |
+
["example2.jpg", base_conf, base_iou],
|
25 |
+
["example3.jpg", base_conf, base_iou]])
|
26 |
|
27 |
+
interface.launch()
|