import gradio as gr import torch from PIL import Image from ultralytics import YOLO model = YOLO(r'pcb-best.pt') def predict(img, conf, iou): results = model.predict(img, conf=conf, iou=iou) for i, r in enumerate(results): # Plot results image im_bgr = r.plot() # BGR-order numpy array im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image # Show results to screen (in supported environments) return im_rgb base_conf, base_iou = 0.25, 0.45 title = "基于YOLO-V8的PCB电路板缺陷检测" des = "鼠标点击上传图片即可检测缺陷,可通过鼠标调整预测置信度,还可点击网页最下方示例图片进行预测" interface = gr.Interface(inputs=['image',gr.Slider(maximum=1, minimum=0, value=base_conf), gr.Slider(maximum=1, minimum=0, value=base_iou)], outputs=["image"], fn=predict, title=title, description=des, examples=[["example1.jpg", base_conf, base_iou], ["example2.jpg", base_conf, base_iou], ["example3.jpg", base_conf, base_iou]]) interface.launch()