"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space.""" import ast import argparse import glob import pickle import gradio as gr import numpy as np import pandas as pd # notebook_url = "https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing" notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK" basic_component_values = [None] * 6 leader_component_values = [None] * 5 def make_default_md(arena_df, elo_results): total_votes = sum(arena_df["num_battles"]) // 2 total_models = len(arena_df) leaderboard_md = f""" # 🏆 LMSYS Chatbot Arena Leaderboard | [Vote](https://chat.lmsys.org) | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) | LMSYS [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) is a crowdsourced open platform for LLM evals. We've collected over **500,000** human preference votes to rank LLMs with the Elo ranking system. Contribute your vote 🗳️ at [chat.lmsys.org](https://chat.lmsys.org)! """ return leaderboard_md def make_arena_leaderboard_md(arena_df): total_votes = sum(arena_df["num_battles"]) // 2 total_models = len(arena_df) space = " " leaderboard_md = f""" Total #models: **{total_models}**.{space} Total #votes: **{"{:,}".format(total_votes)}**.{space} Last updated: March 29, 2024. **NEW!** View ELO leaderboard and stats for different input categories. """ return leaderboard_md def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"): total_votes = sum(arena_df["num_battles"]) // 2 total_models = len(arena_df) space = " " total_subset_votes = sum(arena_subset_df["num_battles"]) // 2 total_subset_models = len(arena_subset_df) leaderboard_md = f"""### {name} Question Coverage #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)**.{space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**.{space} """ return leaderboard_md def make_full_leaderboard_md(elo_results): leaderboard_md = f""" Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**. - [Chatbot Arena](https://chat.lmsys.org/?arena) - a crowdsourced, randomized battle platform. We use 500K+ user votes to compute Elo ratings. - [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses. - [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks. 💻 Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval). Higher values are better for all benchmarks. Empty cells mean not available. """ return leaderboard_md def make_leaderboard_md_live(elo_results): leaderboard_md = f""" # Leaderboard Last updated: {elo_results["last_updated_datetime"]} {elo_results["leaderboard_table"]} """ return leaderboard_md def update_elo_components(max_num_files, elo_results_file): log_files = get_log_files(max_num_files) # Leaderboard if elo_results_file is None: # Do live update battles = clean_battle_data(log_files) elo_results = report_elo_analysis_results(battles) leader_component_values[0] = make_leaderboard_md_live(elo_results) leader_component_values[1] = elo_results["win_fraction_heatmap"] leader_component_values[2] = elo_results["battle_count_heatmap"] leader_component_values[3] = elo_results["bootstrap_elo_rating"] leader_component_values[4] = elo_results["average_win_rate_bar"] # Basic stats basic_stats = report_basic_stats(log_files) md0 = f"Last updated: {basic_stats['last_updated_datetime']}" md1 = "### Action Histogram\n" md1 += basic_stats["action_hist_md"] + "\n" md2 = "### Anony. Vote Histogram\n" md2 += basic_stats["anony_vote_hist_md"] + "\n" md3 = "### Model Call Histogram\n" md3 += basic_stats["model_hist_md"] + "\n" md4 = "### Model Call (Last 24 Hours)\n" md4 += basic_stats["num_chats_last_24_hours"] + "\n" basic_component_values[0] = md0 basic_component_values[1] = basic_stats["chat_dates_bar"] basic_component_values[2] = md1 basic_component_values[3] = md2 basic_component_values[4] = md3 basic_component_values[5] = md4 def update_worker(max_num_files, interval, elo_results_file): while True: tic = time.time() update_elo_components(max_num_files, elo_results_file) durtaion = time.time() - tic print(f"update duration: {durtaion:.2f} s") time.sleep(max(interval - durtaion, 0)) def load_demo(url_params, request: gr.Request): logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") return basic_component_values + leader_component_values def model_hyperlink(model_name, link): return f'{model_name}' def load_leaderboard_table_csv(filename, add_hyperlink=True): lines = open(filename).readlines() heads = [v.strip() for v in lines[0].split(",")] rows = [] for i in range(1, len(lines)): row = [v.strip() for v in lines[i].split(",")] for j in range(len(heads)): item = {} for h, v in zip(heads, row): if h == "Arena Elo rating": if v != "-": v = int(ast.literal_eval(v)) else: v = np.nan elif h == "MMLU": if v != "-": v = round(ast.literal_eval(v) * 100, 1) else: v = np.nan elif h == "MT-bench (win rate %)": if v != "-": v = round(ast.literal_eval(v[:-1]), 1) else: v = np.nan elif h == "MT-bench (score)": if v != "-": v = round(ast.literal_eval(v), 2) else: v = np.nan item[h] = v if add_hyperlink: item["Model"] = model_hyperlink(item["Model"], item["Link"]) rows.append(item) return rows def build_basic_stats_tab(): empty = "Loading ..." basic_component_values[:] = [empty, None, empty, empty, empty, empty] md0 = gr.Markdown(empty) gr.Markdown("#### Figure 1: Number of model calls and votes") plot_1 = gr.Plot(show_label=False) with gr.Row(): with gr.Column(): md1 = gr.Markdown(empty) with gr.Column(): md2 = gr.Markdown(empty) with gr.Row(): with gr.Column(): md3 = gr.Markdown(empty) with gr.Column(): md4 = gr.Markdown(empty) return [md0, plot_1, md1, md2, md3, md4] def get_full_table(arena_df, model_table_df): values = [] for i in range(len(model_table_df)): row = [] model_key = model_table_df.iloc[i]["key"] model_name = model_table_df.iloc[i]["Model"] # model display name row.append(model_name) if model_key in arena_df.index: idx = arena_df.index.get_loc(model_key) row.append(round(arena_df.iloc[idx]["rating"])) else: row.append(np.nan) row.append(model_table_df.iloc[i]["MT-bench (score)"]) row.append(model_table_df.iloc[i]["MMLU"]) # Organization row.append(model_table_df.iloc[i]["Organization"]) # license row.append(model_table_df.iloc[i]["License"]) values.append(row) values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9) return values def create_ranking_str(ranking, ranking_difference): if ranking_difference > 0: return f"{int(ranking)} (\u2191{int(ranking_difference)})" elif ranking_difference < 0: return f"{int(ranking)} (\u2193{int(-ranking_difference)})" else: return f"{int(ranking)}" def get_arena_table(arena_df, model_table_df, arena_subset_df=None): # arena_df = arena_df.sort_values(by=["rating"], ascending=False) arena_df = arena_df.sort_values(by=["final_ranking"], ascending=True) arena_df = arena_df[arena_df["num_battles"] > 2000] # arena_df["final_ranking"] = range(1, len(arena_df) + 1) # sort by rating if arena_subset_df is not None: # filter out models not in the arena_df arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)] # arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False) arena_subset_df = arena_subset_df.sort_values(by=["final_ranking"], ascending=True) # assign ranking by the order # arena_subset_df["final_ranking"] = range(1, len(arena_subset_df) + 1) # join arena_df and arena_subset_df on index arena_df = arena_subset_df.join(arena_df["final_ranking"], rsuffix="_global", how="inner") arena_df['ranking_difference'] = arena_df['final_ranking_global'] - arena_df['final_ranking'] arena_df["final_ranking"] = arena_df.apply(lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]), axis=1) values = [] for i in range(len(arena_df)): row = [] model_key = arena_df.index[i] try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models) model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[ 0 ] # rank ranking = arena_df.iloc[i].get("final_ranking") or i+1 row.append(ranking) # model display name row.append(model_name) # elo rating row.append(round(arena_df.iloc[i]["rating"])) upper_diff = round( arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"] ) lower_diff = round( arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"] ) row.append(f"+{upper_diff}/-{lower_diff}") # num battles row.append(round(arena_df.iloc[i]["num_battles"])) # Organization row.append( model_table_df[model_table_df["key"] == model_key]["Organization"].values[0] ) # license row.append( model_table_df[model_table_df["key"] == model_key]["License"].values[0] ) cutoff_date = model_table_df[model_table_df["key"] == model_key]["Knowledge cutoff date"].values[0] if cutoff_date == "-": row.append("Unknown") else: row.append(cutoff_date) values.append(row) except Exception as e: print(f"{model_key} - {e}") return values key_to_category_name = {"full": "Total", "coding": "Coding", "long": "Long Conversation", "english": "English", "chinese": "Chinese"} def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False): arena_dfs = {} category_elo_results = {} if elo_results_file is None: # Do live update default_md = "Loading ..." p1 = p2 = p3 = p4 = None else: with open(elo_results_file, "rb") as fin: elo_results = pickle.load(fin) if "full" in elo_results: print("KEYS ", elo_results.keys()) for k in elo_results.keys(): for k in key_to_category_name: arena_dfs[key_to_category_name[k]] = elo_results[k]["leaderboard_table_df"] category_elo_results[key_to_category_name[k]] = elo_results[k] p1 = category_elo_results["Total"]["win_fraction_heatmap"] p2 = category_elo_results["Total"]["battle_count_heatmap"] p3 = category_elo_results["Total"]["bootstrap_elo_rating"] p4 = category_elo_results["Total"]["average_win_rate_bar"] arena_df = arena_dfs["Total"] default_md = make_default_md(arena_df, category_elo_results["Total"]) md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown") if leaderboard_table_file: data = load_leaderboard_table_csv(leaderboard_table_file) model_table_df = pd.DataFrame(data) with gr.Tabs() as tabs: # arena table arena_table_vals = get_arena_table(arena_df, model_table_df) with gr.Tab("Arena Elo", id=0): md = make_arena_leaderboard_md(arena_df) leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown") with gr.Row(): category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Total") default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Toal") with gr.Column(variant="panel"): category_deets = gr.Markdown(default_category_details, elem_id="category_deets") elo_display_df = gr.Dataframe( headers=[ "Rank", "🤖 Model", "⭐ Arena Elo", "📊 95% CI", "🗳️ Votes", "Organization", "License", "Knowledge Cutoff", ], datatype=[ "str", "markdown", "number", "str", "number", "str", "str", "str", ], value=arena_table_vals, elem_id="arena_leaderboard_dataframe", height=700, column_widths=[70, 190, 110, 100, 90, 160, 150, 140], wrap=True, ) gr.Markdown( f"""Note: we take the 95% confidence interval into account when determining a model's ranking. A model is ranked higher only if its lower bound of model score is higher than the upper bound of the other model's score. See Figure 3 below for visualization of the confidence intervals. Code to recreate these tables and plots in this [notebook]({notebook_url}) and more discussions in this blog [post](https://lmsys.org/blog/2023-12-07-leaderboard/). """, elem_id="leaderboard_markdown" ) leader_component_values[:] = [default_md, p1, p2, p3, p4] if show_plot: more_stats_md = gr.Markdown( f"""## More Statistics for Chatbot Arena (Overall)""", elem_id="leaderboard_header_markdown" ) with gr.Row(): with gr.Column(): gr.Markdown( "#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles", elem_id="plot-title" ) plot_1 = gr.Plot(p1, show_label=False, elem_id="plot-container") with gr.Column(): gr.Markdown( "#### Figure 2: Battle Count for Each Combination of Models (without Ties)", elem_id="plot-title" ) plot_2 = gr.Plot(p2, show_label=False) with gr.Row(): with gr.Column(): gr.Markdown( "#### Figure 3: Confidence Intervals on Model Strength (via Bootstrapping)", elem_id="plot-title" ) plot_3 = gr.Plot(p3, show_label=False) with gr.Column(): gr.Markdown( "#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)", elem_id="plot-title" ) plot_4 = gr.Plot(p4, show_label=False) with gr.Tab("Full Leaderboard", id=1): md = make_full_leaderboard_md(elo_results) gr.Markdown(md, elem_id="leaderboard_markdown") full_table_vals = get_full_table(arena_df, model_table_df) gr.Dataframe( headers=[ "🤖 Model", "⭐ Arena Elo", "📈 MT-bench", "📚 MMLU", "Organization", "License", ], datatype=["markdown", "number", "number", "number", "str", "str"], value=full_table_vals, elem_id="full_leaderboard_dataframe", column_widths=[200, 100, 100, 100, 150, 150], height=700, wrap=True, ) if not show_plot: gr.Markdown( """ ## Visit our [HF space](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) for more analysis! If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model). """, elem_id="leaderboard_markdown", ) else: pass def update_leaderboard_and_plots(category): arena_subset_df = arena_dfs[category] elo_subset_results = category_elo_results[category] arena_df = arena_dfs["Total"] arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df) if category != "Total": arena_values = update_leaderboard_df(arena_values) p1 = elo_subset_results["win_fraction_heatmap"] p2 = elo_subset_results["battle_count_heatmap"] p3 = elo_subset_results["bootstrap_elo_rating"] p4 = elo_subset_results["average_win_rate_bar"] more_stats_md = f"""## More Statistics for Chatbot Arena - {category} """ leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category) return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md def update_leaderboard_df(arena_table_vals): elo_datarame = pd.DataFrame(arena_table_vals, columns=["Rank", "Model", "Arena Elo", "95% CI", "Votes", "Organization", "License", "Knowledge Cutoff"]) # goal: color the rows based on the rank with styler def highlight_max(s): # all items in S which contain up arrow should be green, down arrow should be red, otherwise black return ["color: green" if "\u2191" in v else "color: red" if "\u2193" in v else "" for v in s] styled_df = elo_datarame.style.apply(highlight_max, subset=["Rank"]) return styled_df category_dropdown.change(update_leaderboard_and_plots, inputs=[category_dropdown], outputs=[elo_display_df, plot_1, plot_2, plot_3, plot_4, more_stats_md, category_deets]) with gr.Accordion( "📝 Citation", open=True, ): citation_md = """ ### Citation Please cite the following paper if you find our leaderboard or dataset helpful. ``` @misc{chiang2024chatbot, title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference}, author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica}, year={2024}, eprint={2403.04132}, archivePrefix={arXiv}, primaryClass={cs.AI} } """ gr.Markdown(citation_md, elem_id="leaderboard_markdown") gr.Markdown(acknowledgment_md) if show_plot: return [md_1, plot_1, plot_2, plot_3, plot_4] return [md_1] block_css = """ #notice_markdown { font-size: 104% } #notice_markdown th { display: none; } #notice_markdown td { padding-top: 6px; padding-bottom: 6px; } #category_deets { text-align: center; padding: 0px; } #leaderboard_markdown { font-size: 104% } #leaderboard_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_header_markdown { font-size: 104%; text-align: center; display:block; } #leaderboard_dataframe td { line-height: 0.1em; } #plot-title { text-align: center; display:block; } #non-interactive-button { display: inline-block; padding: 10px 10px; background-color: #f7f7f7; /* Super light grey background */ text-align: center; font-size: 26px; /* Larger text */ border-radius: 0; /* Straight edges, no border radius */ border: 0px solid #dcdcdc; /* A light grey border to match the background */ user-select: none; /* The text inside the button is not selectable */ pointer-events: none; /* The button is non-interactive */ } footer { display:none !important } .sponsor-image-about img { margin: 0 20px; margin-top: 20px; height: 40px; max-height: 100%; width: auto; float: left; } """ acknowledgment_md = """ ### Acknowledgment We thank [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous [sponsorship](https://lmsys.org/donations/).