Evan Frick
commited on
Commit
•
631e505
1
Parent(s):
1c6662a
Add
Browse files
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
from os.path import split as path_split, splitext as path_splitext
|
5 |
+
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="PPE Metrics Explorer",
|
8 |
+
layout="wide", # This makes the app use the entire screen width
|
9 |
+
initial_sidebar_state="expanded",
|
10 |
+
)
|
11 |
+
|
12 |
+
# Set the title of the app
|
13 |
+
st.title("PPE Metrics Explorer")
|
14 |
+
|
15 |
+
@st.cache_data
|
16 |
+
def load_data(file_path):
|
17 |
+
"""
|
18 |
+
Load pickle data from a file.
|
19 |
+
"""
|
20 |
+
with open(file_path, 'r') as file:
|
21 |
+
data = pickle.load(file)
|
22 |
+
return data
|
23 |
+
|
24 |
+
def contains_list(column):
|
25 |
+
return column.apply(lambda x: isinstance(x, list)).any()
|
26 |
+
|
27 |
+
def main():
|
28 |
+
# Load the pickle data
|
29 |
+
data = load_data('results.pkl')
|
30 |
+
|
31 |
+
# Extract the list of benchmarks
|
32 |
+
benchmarks = list(data.keys())
|
33 |
+
|
34 |
+
# Dropdown for selecting benchmark
|
35 |
+
selected_benchmark = st.selectbox("Select a Benchmark", benchmarks)
|
36 |
+
|
37 |
+
# Extract data for the selected benchmark
|
38 |
+
benchmark_data = data[selected_benchmark]
|
39 |
+
|
40 |
+
# Prepare a list to store records
|
41 |
+
records = []
|
42 |
+
|
43 |
+
# Iterate over each model in the selected benchmark
|
44 |
+
for model, metrics in benchmark_data.items():
|
45 |
+
|
46 |
+
model = path_split(path_splitext(model)[0])[-1]
|
47 |
+
# Flatten the metrics dictionary if there are nested metrics
|
48 |
+
# For example, in "human_preference_v1", there are subcategories like "overall", "hard_prompt", etc.
|
49 |
+
# We'll aggregate these or allow the user to select subcategories as needed
|
50 |
+
if isinstance(metrics, dict):
|
51 |
+
# Check if metrics contain nested dictionaries
|
52 |
+
nested_keys = list(metrics.keys())
|
53 |
+
# If there are nested keys, we can allow the user to select a subcategory
|
54 |
+
# For simplicity, let's assume we want to display all nested metrics concatenated
|
55 |
+
flattened_metrics = {}
|
56 |
+
for subkey, submetrics in metrics.items():
|
57 |
+
if isinstance(submetrics, dict):
|
58 |
+
for metric_name, value in submetrics.items():
|
59 |
+
# Create a compound key
|
60 |
+
key = f"{subkey} - {metric_name}"
|
61 |
+
flattened_metrics[key] = value
|
62 |
+
else:
|
63 |
+
flattened_metrics[subkey] = submetrics
|
64 |
+
records.append({
|
65 |
+
"Model": model,
|
66 |
+
**flattened_metrics
|
67 |
+
})
|
68 |
+
else:
|
69 |
+
# If metrics are not nested, just add them directly
|
70 |
+
records.append({
|
71 |
+
"Model": model,
|
72 |
+
"Value": metrics
|
73 |
+
})
|
74 |
+
|
75 |
+
# Create a DataFrame
|
76 |
+
df = pd.DataFrame(records)
|
77 |
+
|
78 |
+
# Drop columns that contain lists
|
79 |
+
df = df.loc[:, ~df.apply(contains_list)]
|
80 |
+
|
81 |
+
if "human" not in selected_benchmark:
|
82 |
+
df = df[sorted(df.columns, key=str.lower)]
|
83 |
+
|
84 |
+
# Set 'Model' as the index
|
85 |
+
df.set_index("Model", inplace=True)
|
86 |
+
|
87 |
+
|
88 |
+
# Create two columns: one for spacing and one for the search bar
|
89 |
+
col1, col2, col3 = st.columns([1, 3, 1]) # Adjust the ratios as needed
|
90 |
+
with col1:
|
91 |
+
# **Column Search Functionality**
|
92 |
+
# st.markdown("#### Filter Columns")
|
93 |
+
column_search = st.text_input("", placeholder="Search metrics...", key="search")
|
94 |
+
# column_search = st.text_input("Search for metrics (column names):", "")
|
95 |
+
|
96 |
+
if column_search:
|
97 |
+
# Filter columns that contain the search term (case-insensitive)
|
98 |
+
filtered_columns = [col for col in df.columns if column_search.lower() in col.lower()]
|
99 |
+
if filtered_columns:
|
100 |
+
df_display = df[filtered_columns]
|
101 |
+
else:
|
102 |
+
st.warning("No columns match your search.")
|
103 |
+
df_display = pd.DataFrame() # Empty DataFrame
|
104 |
+
else:
|
105 |
+
# If no search term, display all columns
|
106 |
+
df_display = df
|
107 |
+
|
108 |
+
# Display the DataFrame
|
109 |
+
st.dataframe(df_display.sort_values(df_display.columns[0], ascending=False) if len(df_display) else df_display, use_container_width=True)
|
110 |
+
|
111 |
+
# Optional: Allow user to download the data as CSV
|
112 |
+
csv = df_display.to_csv()
|
113 |
+
st.download_button(
|
114 |
+
label="Download data as CSV",
|
115 |
+
data=csv,
|
116 |
+
file_name=f"{selected_benchmark}_metrics.csv",
|
117 |
+
mime='text/csv',
|
118 |
+
)
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
main()
|