LLMArena commited on
Commit
1f74766
·
verified ·
1 Parent(s): 170c900
app.py CHANGED
@@ -13,9 +13,19 @@ import numpy as np
13
  basic_component_values = [None] * 6
14
  leader_component_values = [None] * 5
15
 
 
 
 
 
 
 
 
16
  def make_default_md_1():
17
  leaderboard_md = f"""
18
- # 🏆 LLM Arena in Russian: Leaderboard
 
 
 
19
  """
20
  return leaderboard_md
21
 
@@ -23,47 +33,43 @@ def make_default_md_1():
23
  def make_default_md_2():
24
  leaderboard_md = f"""
25
 
26
- The LLM Arena platform is an open crowdsourcing platform for evaluating large language models (LLM) in Russian. We collect pairwise comparisons from people to rank LLMs using the Bradley-Terry model and display model ratings on the Elo scale.
27
- Chatbot Arena in Russian depends on community participation, so please contribute by casting your vote!
28
 
29
- - To **add your model** to the comparison, contact us on TG: [Group](https://t.me/+bFEOl-Bdmok4NGUy)
30
- - If you **found a bug** or **have a suggestion**, contact us: [Roman](https://t.me/roman_kucev)
31
- - You can **contribute your vote** at [llmarena.ru](https://llmarena.ru/)!
32
  """
33
 
34
  return leaderboard_md
35
 
36
 
37
-
38
  def make_arena_leaderboard_md(arena_df, last_updated_time):
39
  total_votes = sum(arena_df["num_battles"])
40
  total_models = len(arena_df)
41
- space = "   "
42
 
43
  leaderboard_md = f"""
44
- Total # of models: **{total_models}**.{space} Total # of votes: **{"{:,}".format(total_votes)}**.{space} Last updated: {last_updated_time}.
45
 
46
- ***Rank (UB)**: model rating (upper bound), determined as one plus the number of models that are statistically better than the target model.
47
- Model A is statistically better than Model B when the lower bound of Model A's rating is higher than the upper bound of Model B's rating (with a 95% confidence interval).
48
- See Figure 1 below for a visualization of the confidence intervals of model ratings.
49
  """
50
  return leaderboard_md
51
 
52
 
53
-
54
- def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
55
  total_votes = sum(arena_df["num_battles"])
56
  total_models = len(arena_df)
57
- space = "   "
58
  total_subset_votes = sum(arena_subset_df["num_battles"])
59
  total_subset_models = len(arena_subset_df)
60
  leaderboard_md = f"""### {cat_name_to_explanation[name]}
61
- #### {space} #models: **{total_subset_models} ({round(total_subset_models / total_models * 100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes / total_votes * 100)}%)**{space}
62
  """
63
  return leaderboard_md
64
 
65
 
66
-
67
  def model_hyperlink(model_name, link):
68
  return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
69
 
@@ -222,22 +228,24 @@ key_to_category_name = {
222
  "site_visitors/medium_prompts:style control": "site_visitors/medium_prompts:style control"
223
  }
224
  cat_name_to_explanation = {
225
- "Overall": "All queries",
226
- "crowdsourcing/simple_prompts": "Queries collected through crowdsourcing. Mostly simple ones.",
227
- "site_visitors/medium_prompts": "Queries from website visitors. Contain more complex prompts.",
228
- "site_visitors/medium_prompts:style control": "Queries from website visitors. Contain more complex prompts. [Reduced stylistic influence](https://lmsys.org/blog/2024-08-28-style-control/) of the response on the rating."
229
  }
230
-
231
  cat_name_to_baseline = {
232
  "Hard Prompts (English)": "English",
233
  }
234
 
235
  actual_categories = [
236
- "Overall",
237
- "crowdsourcing/simple_prompts",
238
  "site_visitors/medium_prompts",
239
  "site_visitors/medium_prompts:style control"
240
  ]
 
 
 
241
 
242
 
243
  def read_elo_file(elo_results_file, leaderboard_table_file):
@@ -246,8 +254,8 @@ def read_elo_file(elo_results_file, leaderboard_table_file):
246
  with open(elo_results_file, "rb") as fin:
247
  elo_results = pickle.load(fin)
248
  last_updated_time = None
249
- if "full" in elo_results:
250
- last_updated_time = elo_results["full"]["last_updated_datetime"].split(
251
  " "
252
  )[0]
253
  for k in key_to_category_name.keys():
@@ -275,11 +283,13 @@ def build_leaderboard_tab(
275
 
276
  last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
277
 
278
- p1 = category_elo_results["Overall"]["win_fraction_heatmap"]
279
- p2 = category_elo_results["Overall"]["battle_count_heatmap"]
280
- p3 = category_elo_results["Overall"]["bootstrap_elo_rating"]
281
- p4 = category_elo_results["Overall"]["average_win_rate_bar"]
282
- arena_df = arena_dfs["Overall"]
 
 
283
  default_md = make_default_md_1()
284
  default_md_2 = make_default_md_2()
285
 
@@ -287,7 +297,7 @@ def build_leaderboard_tab(
287
  with gr.Column(scale=4):
288
  md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
289
  with gr.Column(scale=1):
290
- vote_button = gr.Button("Vote!", link="https://llmarena.ru")
291
  md_2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown")
292
 
293
  if leaderboard_table_file:
@@ -299,19 +309,19 @@ def build_leaderboard_tab(
299
  arena_table_vals = get_arena_table(arena_df, model_table_df)
300
 
301
  with gr.Tab("Арена", id=0):
302
- md = make_arena_leaderboard_md(arena_df, last_updated_time)
303
 
304
  lb_description = gr.Markdown(md, elem_id="leaderboard_markdown")
305
  with gr.Row():
306
  with gr.Column(scale=2):
307
  category_dropdown = gr.Dropdown(
308
- choices=actual_categories,
 
309
  label="Category",
310
- value="Overall",
311
  )
312
  default_category_details = make_category_arena_leaderboard_md(
313
- arena_df, arena_df, name="Overall"
314
- )
315
 
316
  with gr.Column(scale=4, variant="panel"):
317
  category_deets = gr.Markdown(
@@ -367,7 +377,7 @@ def build_leaderboard_tab(
367
 
368
  if show_plot:
369
  more_stats_md = gr.Markdown(
370
- f"""## More statistics on Chatbot Arena""",
371
  elem_id="leaderboard_header_markdown",
372
  )
373
  with gr.Row():
@@ -452,10 +462,10 @@ def build_leaderboard_tab(
452
  _, arena_dfs, category_elo_results, _ , model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
453
 
454
  arena_subset_df = arena_dfs[category]
455
- arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 300]
456
  elo_subset_results = category_elo_results[category]
457
 
458
- baseline_category = cat_name_to_baseline.get(category, "Overall")
459
  arena_df = arena_dfs[baseline_category]
460
  arena_values = get_arena_table(
461
  arena_df,
@@ -574,7 +584,7 @@ def build_demo(elo_results_file, leaderboard_table_file):
574
  )
575
 
576
  with gr.Blocks(
577
- title="LLM arena: leaderboard",
578
  theme=theme,
579
  css=block_css,
580
  ) as demo:
@@ -709,4 +719,4 @@ if __name__ == "__main__":
709
  leaderboard_table_file = leaderboard_table_files[-1]
710
 
711
  demo = build_demo(elo_result_file, leaderboard_table_file)
712
- demo.launch(show_api=False)
 
13
  basic_component_values = [None] * 6
14
  leader_component_values = [None] * 5
15
 
16
+
17
+ promo_banner = """
18
+ <div style="background-color: #ffcc00; color: black; padding: 10px; text-align: center; font-weight: bold; font-size: 18px; border: 2px solid #000;">
19
+ llmarena.ru - ИСПОЛЬЗУЙТЕ БЕСПЛАТНО ПОСЛЕДНИЕ ВЕРСИИ ЛУЧШИХ ЧАТ-БОТОВ НА РУССКОМ
20
+ </div>
21
+ """
22
+
23
  def make_default_md_1():
24
  leaderboard_md = f"""
25
+ # 🏆 LLM арена на русском: таблица лидеров
26
+
27
+ {promo_banner}
28
+
29
  """
30
  return leaderboard_md
31
 
 
33
  def make_default_md_2():
34
  leaderboard_md = f"""
35
 
36
+ Платформа LLM Arena является открытой краудсорсинговой платформой для оценки больших языковых моделей (LLM) на русском языке. Мы собираем парные сравнения от людей, чтобы ранжировать LLM с помощью модели Брэдли-Терри и отображать рейтинги моделей по шкале Эло.
37
+ Chatbot Arena на русском зависит от участия сообщества, пожалуйста, внесите свой вклад, отдав свой голос!
38
 
39
+ - Чтобы **добавить свою модель** в сравнение - напишите нам в tg: [Группа](https://t.me/+bFEOl-Bdmok4NGUy)
40
+ - Если вы **нашли ошибку**, либо у вас **есть предложение** - напишите нам: [Роман](https://t.me/roman_kucev)
 
41
  """
42
 
43
  return leaderboard_md
44
 
45
 
 
46
  def make_arena_leaderboard_md(arena_df, last_updated_time):
47
  total_votes = sum(arena_df["num_battles"])
48
  total_models = len(arena_df)
49
+ space = " "
50
 
51
  leaderboard_md = f"""
52
+ Всего #моделей: **{total_models}**.{space} Всего #голосов: **{"{:,}".format(total_votes)}**.{space} Последнее обновление: {last_updated_time}.
53
 
54
+ ***Ранг (UB)**: рейтинг модели (верхняя граница), определяется как один плюс количество моделей, которые статистически лучше целевой модели.
55
+ Модель A статистически лучше модели B, когда нижняя граница оценки модели A больше верхней границы оценки модели B (с доверительным интервалом 95%).
56
+ См. Рисунок 1 ниже для визуализации доверительных интервалов оценок моделей.
57
  """
58
  return leaderboard_md
59
 
60
 
61
+ def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="site_visitors/medium_prompts:style control"):
 
62
  total_votes = sum(arena_df["num_battles"])
63
  total_models = len(arena_df)
64
+ space = " "
65
  total_subset_votes = sum(arena_subset_df["num_battles"])
66
  total_subset_models = len(arena_subset_df)
67
  leaderboard_md = f"""### {cat_name_to_explanation[name]}
68
+ #### {space} #модели: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #голоса: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space}
69
  """
70
  return leaderboard_md
71
 
72
 
 
73
  def model_hyperlink(model_name, link):
74
  return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
75
 
 
228
  "site_visitors/medium_prompts:style control": "site_visitors/medium_prompts:style control"
229
  }
230
  cat_name_to_explanation = {
231
+ "Overall": "Все запросы",
232
+ "crowdsourcing/simple_prompts": "Запросы, собранные с краудсорсинга. Преимущественно, простые.",
233
+ "site_visitors/medium_prompts": "Запросы от пользователей сайта. Содержат более сложные промпты.",
234
+ "site_visitors/medium_prompts:style control": "Запросы от пользователей сайта. Содержат более сложные промпты. [Снижено влияние стилистики](https://lmsys.org/blog/2024-08-28-style-control/) ответа на оценку."
235
  }
 
236
  cat_name_to_baseline = {
237
  "Hard Prompts (English)": "English",
238
  }
239
 
240
  actual_categories = [
241
+ # "Overall",
242
+ # "crowdsourcing/simple_prompts",
243
  "site_visitors/medium_prompts",
244
  "site_visitors/medium_prompts:style control"
245
  ]
246
+ req_cat = "site_visitors/medium_prompts:style control"
247
+ # selected_category = req_cat if req_cat in actual_categories else "Overall"
248
+ selected_category = req_cat if req_cat in actual_categories else "site_visitors/medium_prompts:style control"
249
 
250
 
251
  def read_elo_file(elo_results_file, leaderboard_table_file):
 
254
  with open(elo_results_file, "rb") as fin:
255
  elo_results = pickle.load(fin)
256
  last_updated_time = None
257
+ if selected_category in elo_results:
258
+ last_updated_time = elo_results[selected_category]["last_updated_datetime"].split(
259
  " "
260
  )[0]
261
  for k in key_to_category_name.keys():
 
283
 
284
  last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
285
 
286
+ arena_df = arena_dfs[selected_category]
287
+
288
+ p1 = category_elo_results[selected_category]["win_fraction_heatmap"]
289
+ p2 = category_elo_results[selected_category]["battle_count_heatmap"]
290
+ p3 = category_elo_results[selected_category]["bootstrap_elo_rating"]
291
+ p4 = category_elo_results[selected_category]["average_win_rate_bar"]
292
+ # arena_df = arena_dfs["Overall"]
293
  default_md = make_default_md_1()
294
  default_md_2 = make_default_md_2()
295
 
 
297
  with gr.Column(scale=4):
298
  md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
299
  with gr.Column(scale=1):
300
+ vote_button = gr.Button("Голосовать!", link="https://llmarena.ru")
301
  md_2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown")
302
 
303
  if leaderboard_table_file:
 
309
  arena_table_vals = get_arena_table(arena_df, model_table_df)
310
 
311
  with gr.Tab("Арена", id=0):
312
+ md = make_arena_leaderboard_md(arena_dfs[selected_category], last_updated_time)
313
 
314
  lb_description = gr.Markdown(md, elem_id="leaderboard_markdown")
315
  with gr.Row():
316
  with gr.Column(scale=2):
317
  category_dropdown = gr.Dropdown(
318
+ choices=actual_categories, # Updated categories
319
+ value=selected_category, # Default to selected_category
320
  label="Category",
 
321
  )
322
  default_category_details = make_category_arena_leaderboard_md(
323
+ arena_df, arena_df, name=selected_category
324
+ )
325
 
326
  with gr.Column(scale=4, variant="panel"):
327
  category_deets = gr.Markdown(
 
377
 
378
  if show_plot:
379
  more_stats_md = gr.Markdown(
380
+ f"""## Больше статистики Чат-бот Арены""",
381
  elem_id="leaderboard_header_markdown",
382
  )
383
  with gr.Row():
 
462
  _, arena_dfs, category_elo_results, _ , model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
463
 
464
  arena_subset_df = arena_dfs[category]
465
+ arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 200]
466
  elo_subset_results = category_elo_results[category]
467
 
468
+ baseline_category = cat_name_to_baseline.get(category, selected_category)
469
  arena_df = arena_dfs[baseline_category]
470
  arena_values = get_arena_table(
471
  arena_df,
 
584
  )
585
 
586
  with gr.Blocks(
587
+ title="LLM арена: таблица лидеров",
588
  theme=theme,
589
  css=block_css,
590
  ) as demo:
 
719
  leaderboard_table_file = leaderboard_table_files[-1]
720
 
721
  demo = build_demo(elo_result_file, leaderboard_table_file)
722
+ demo.launch(show_api=False)
elo_results_20241104.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac6bba2760cbebef6c102e2e0298e8210681ec62298a427f953c7cf5e879c7b7
3
+ size 1128906
leaderboard_table_20241104.csv ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ rating,variance,rating_q975,rating_q025,num_battles,final_ranking,key,Model,License,Organization,Knowledge cutoff date,Link,MT-bench (score),MMLU
2
+ 1020.0941337638236,266.79812389634293,1048.4714871714837,990.157272263124,389,6,Google: Gemini Pro 1.5,Google: Gemini Pro 1.5,Proprietary,Google,-,https://gemini.google.com/,-,-
3
+ 1050.4891964460119,164.8566019121936,1070.4758304563127,1030.4526046986537,950,5,gpt-4o-2024-05-13,gpt-4o-2024-05-13,Proprietary,OpenAI,10-2023,https://openai.com/api/,70.0,50.0
4
+ 907.1540779119522,152.44312233878705,924.8292787048002,888.5831381049169,966,31,claude-3-5-sonnet-20240620,claude-3-5-sonnet-20240620,Proprietary,Anthropic,06-2024,https://docs.anthropic.com/en/docs/intro-to-claude#claude-3-5-family,-,-
5
+ 963.7540321695844,315.4811417431863,992.4294197495084,929.2336901178561,298,17,Google: Gemini Flash 1.5,Google: Gemini Flash 1.5,Proprietary,Google,-,https://gemini.google.com/,-,-
6
+ 938.3500673452211,167.34970436668493,959.2617772252623,917.5310845866042,870,21,gpt-4-turbo-2024-04-09,gpt-4-turbo-2024-04-09,Proprietary,OpenAI,04-2023,https://openai.com/api/,70.0,50.0
7
+ 895.933980228049,154.01351264006163,914.4238811231883,877.0843085172172,978,36,gpt-4-0613,gpt-4-0613,Proprietary,OpenAI,04-2023,https://openai.com/api/,70.0,50.0
8
+ 952.1854601378284,299.1996605180205,982.9796880907819,916.5655701930941,332,19,Qwen2.5 72B Instruct,Qwen2.5 72B Instruct,Open Source,Qwen,-,https://huggingface.co/Qwen/Qwen2.5-72B-Instruct,-,-
9
+ 933.5289712493295,161.05840171419112,952.064415468989,914.8729396004192,950,22,Llama 3.1 405B Instruct Turbo,Llama 3.1 405B Instruct Turbo,Proprietary,Meta,-,https://ai.meta.com/blog/meta-llama-3-1/,-,-
10
+ 983.3850524316155,334.0926296624673,1014.6138397344725,948.3324666111489,238,11,gpt-4o-mini-2024-07-18,gpt-4o-mini-2024-07-18,Proprietary,OpenAI,07-2024,https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/,70.0,50.0
11
+ 953.8875162026574,155.46350601080604,970.8543168490975,933.3240200196258,905,21,Gemma 2 27B,Gemma 2 27B,Proprietary,Google,-,https://blog.google/technology/developers/google-gemma-2/,-,-
12
+ 1100.9015626574596,270.55404691951156,1129.4929575183326,1071.694889373809,396,1,saiga_llama3_70b,saiga_llama3_70b,Open Source,Ilya Gusev,In training,https://huggingface.co/IlyaGusev/saiga_llama3_70b_sft_m1_d5_abliterated_awq_4bit,-,-
13
+ 1133.6193389947878,332.6945486648912,1166.44133076706,1101.6242001831574,356,1,YandexGPT 4 Pro,YandexGPT 4 Pro,Proprietary,Yandex,In training,https://ya.ru/ai/gpt-4,45.2,35.2
14
+ 1008.4955571330311,169.5668466091922,1028.1800382090728,986.730713859822,797,11,Llama 3.1 70B Instruct Turbo,Llama 3.1 70B Instruct Turbo,Proprietary,Meta,-,https://ai.meta.com/blog/meta-llama-3-1/,-,-
15
+ 951.312998474229,152.24765882194694,969.7726145372793,930.4924520576633,820,21,YandexGPT Experimental,YandexGPT Experimental,Proprietary,Yandex,In training,https://ya.ru/ai/gpt-3,45.2,35.2
16
+ 1061.7703080153135,149.62906437210688,1079.7055041468923,1043.0716952280472,979,4,Cohere: Command R+ (08-2024),Cohere: Command R+ (08-2024),Open Source,Cohere,-,https://docs.cohere.com/v2/docs/command-r-plus,-,-
17
+ 1024.8753916951505,149.62487638126635,1043.5382073115381,1005.8739755282235,995,7,claude-3-haiku-20240307,claude-3-haiku-20240307,Proprietary,Anthropic,03-2024,https://docs.anthropic.com/en/docs/intro-to-claude#claude-3-family,-,-
18
+ 950.3516767115293,147.4032889916814,967.4049958849685,929.9097475521759,1018,21,Qwen 2 Instruct (72B),Qwen 2 Instruct (72B),Open Source,Qwen,12-2023,https://llama.meta.com/llama3/,-,-
19
+ 966.7759450452351,262.8182107437766,994.1637029450085,935.474415495778,381,17,LLaMA-3 Chat (70B),LLaMA-3 Chat (70B),Proprietary,Meta,12-2023,https://llama.meta.com/llama3/,-,-
20
+ 1017.5355191893299,180.81807660147226,1037.1607008833687,994.7052412113591,813,9,gpt-3.5-turbo-0125,gpt-3.5-turbo-0125,Proprietary,OpenAI,09-2021,https://openai.com/api/,65.2,45.2
21
+ 1062.4649735204273,299.03569628234584,1092.211382202106,1030.6266052156398,381,3,YandexGPT 3 Pro,YandexGPT 3 Pro,Proprietary,Yandex,In training,https://ya.ru/ai/gpt-3,65.2,45.2
22
+ 942.5948037306767,325.4500264064562,972.5128013555731,908.0663108275484,310,21,Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24,Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24,Open Source,Vikhrmodels,In training,https://huggingface.co/Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24,-,-
23
+ 952.6100543737643,184.3208375229143,972.2134616796886,930.2982204435816,930,21,GigaChat-Pro 4.0.26.15,GigaChat-Pro 4.0.26.15,Proprietary,Sber,In training,https://developers.sber.ru/portal/products/gigachat,-,-
24
+ 985.8990151017026,243.33892162724038,1012.5603014418141,957.9666717260004,411,11,Llama 3.2 11B Instruct,Llama 3.2 11B Instruct,Open Source,Meta,-,https://www.llama.com/,-,-
25
+ 948.8582592254037,234.38623001489805,974.4234257088974,921.3483474040983,450,20,saiga_llama3_8b_v7,saiga_llama3_8b_v7,Open Source,Ilya Gusev,In training,https://huggingface.co/IlyaGusev/saiga_llama3_8b,-,-
26
+ 941.5827953242377,141.83798825976268,958.0098168058221,922.2463604285707,1117,21,GigaChat 4.0.26.15,GigaChat 4.0.26.15,Proprietary,Sber,In training,https://developers.sber.ru/portal/products/gigachat,-,-
27
+ 991.0583972778235,133.3432963285682,1007.0465878297241,975.5250878450807,1081,11,saiga_phi3_medium,saiga_phi3_medium,Open Source,Ilya Gusev,In training,https://huggingface.co/IlyaGusev/saiga_phi3_medium_sft_m1_d2_kto_m5_d7,-,-
28
+ 1025.0446698674752,192.94697376477063,1046.0371188029892,1000.9205606266152,592,7,GigaChat-Pro 4.0.26.8,GigaChat-Pro 4.0.26.8,Proprietary,Sber,In training,https://developers.sber.ru/portal/products/gigachat,-,-
29
+ 1021.3122431715511,155.54992272155414,1039.970215543838,1001.4240352577766,836,9,T-lite-instruct-0.1,T-lite-instruct-0.1,Open Source,t-bank-ai,In training,https://huggingface.co/AnatoliiPotapov/T-lite-instruct-0.1,-,-
30
+ 1106.308543816692,178.8242558868404,1128.7996392688226,1084.5442323851867,881,1,GigaChat-Plus 4.0.26.15,GigaChat-Plus 4.0.26.15,Proprietary,Sber,In training,https://developers.sber.ru/portal/products/gigachat,-,-
31
+ 1017.8024832047015,173.25216212348474,1036.8265962249984,996.6655431938515,809,9,LLaMA-3 Chat (8B),LLaMA-3 Chat (8B),Proprietary,Meta,03-2023,https://llama.meta.com/llama3/,-,-
32
+ 991.2509437638029,129.54016871578966,1007.1961532996846,973.1646793739749,1169,11,Llama 3.1 8B Instruct Turbo,Llama 3.1 8B Instruct Turbo,Proprietary,Meta,-,https://ai.meta.com/blog/meta-llama-3-1/,-,-
33
+ 1062.5286294893106,136.49341097409925,1078.8139104084269,1046.465053838073,1221,4,Vikhrmodels/it-5.2-fp16-cp,Vikhrmodels/it-5.2-fp16-cp,Open Source,Vikhrmodels,In training,https://huggingface.co/Vikhrmodels/it-5.2-fp16-cp,-,-
34
+ 1079.4763195876462,144.09405399528333,1095.6428290624463,1062.2829408914379,1253,2,RefalMachine/ruadapt_llama3_instruct_lep_saiga_kto_ablitirated,RefalMachine/ruadapt_llama3_instruct_lep_saiga_kto_ablitirated,Open Source,RefalMachine,-,https://huggingface.co/RefalMachine/ruadapt_llama3_instruct_lep_saiga_kto_ablitirated,-,-
35
+ 1109.8938509046443,136.53052349755055,1125.9103376994174,1093.3023007575118,1299,1,YandexGPT 3 Lite,YandexGPT 3 Lite,Proprietary,Yandex,In training,https://ya.ru/ai/gpt-3,45.2,35.2
36
+ 1060.612847947084,145.668401667651,1078.049475337932,1040.6996640517195,1069,4,GigaChat 4.0.26.8,GigaChat 4.0.26.8,Proprietary,Sber,In training,https://developers.sber.ru/portal/products/gigachat,-,-
37
+ 1025.3199794146722,186.46791863420782,1045.403805372983,1002.9186802788619,665,7,GigaChat-Pro 2.2.25.3,GigaChat-Pro 2.2.25.3,Proprietary,Sber,In training,https://developers.sber.ru/portal/products/gigachat,-,-
38
+ 926.5871917765131,363.0149305503841,959.0631717074187,890.4975595097276,257,21,saiga_llama3_8b_v6,saiga_llama3_8b_v6,Open Source,Ilya Gusev,In training,https://huggingface.co/IlyaGusev/saiga_llama3_8b,-,-
39
+ 965.1822926529305,162.7619151723603,983.8070680431707,944.4186662601812,783,19,GigaChat 3.1.25.3,GigaChat 3.1.25.3,Proprietary,Sber,In training,https://developers.sber.ru/portal/products/gigachat,-,-
40
+ 955.3928154793401,212.4478147817904,977.7411609075767,926.1110851867377,489,19,GigaChat-Plus 3.1.25.3,GigaChat-Plus 3.1.25.3,Proprietary,Sber,In training,https://developers.sber.ru/portal/products/gigachat,-,-