import gradio as gr import jax import jax.numpy as jnp import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from PIL import Image from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel import cv2 title = "ControlNet for Cartoon-ifying" description = "This is a demo on ControlNet for changing images of people into cartoons of different styles." examples = [["./simpsons_human_1.jpg", "turn into a simpsons character", "./simpsons_animated_1.jpg"]] # Constants low_threshold = 100 high_threshold = 200 base_model_path = "runwayml/stable-diffusion-v1-5" controlnet_path = "lmattingly/controlnet-uncanny-simpsons" #controlnet_path = "JFoz/dog-cat-pose" # Models controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( controlnet_path, dtype=jnp.bfloat16 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16 ) def create_key(seed=0): return jax.random.PRNGKey(seed) def infer(prompts, image): params["controlnet"] = controlnet_params num_samples = 1 #jax.device_count() rng = create_key(0) rng = jax.random.split(rng, jax.device_count()) im = image image = Image.fromarray(im) prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) processed_image = pipe.prepare_image_inputs([image] * num_samples) p_params = replicate(params) prompt_ids = shard(prompt_ids) processed_image = shard(processed_image) output = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=rng, num_inference_steps=5, jit=True, ).images output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) return output_images gr.Interface(fn = infer, inputs = ["text", "image"], outputs = "gallery", title = title, description = description, theme='gradio/soft', examples=[["a simpsons cartoon character", "simpsons_human_1.jpg"]] ).launch()